Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786832

ABSTRACT

Bioaccessibility of metals from substances and alloys is increasingly used as part of the assessment to predict potential toxicity. However, data are sparse on the metal bioaccessibility from nanoparticle (NP) size metal substances. This study examines nickel ion release from metallic nickel and nickel oxide micron particles (MPs) and NPs in simulated biological fluids at various timepoints including those relevant for specific routes of exposure. The results suggest that MPs of both metallic nickel and nickel oxide generally released more nickel ions in acidic simulated biological fluids (gastric and lysosomal) than NPs of the same substance, with the largest differences being for nickel oxide. In more neutral pH fluids (interstitial and perspiration), nickel metal NPs released more nickel ions than MPs, with nickel oxide results showing a higher release for MPs in interstitial fluid yet a lower release in perspiration fluid. Various experimental factors related to the particle, fluid, and extraction duration were identified that can have an impact on the particle dissolution and release of nickel ions. Overall, the results suggest that based on nickel release alone, nickel NPs are not inherently more hazardous than nickel MPs. Moreover, analyses should be performed on a case-by-case basis with consideration of various experimental factors and correlation with in vivo data.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36678015

ABSTRACT

Nickel oxide nanoparticles (NiO NPs) have been the focus of many toxicity studies. However, acute toxicity studies that identify toxicological dose descriptors, such as an LC50 or LD50, are lacking. In this paper, the acute toxicity of NiO NPs was evaluated in albino-derived Sprague-Dawley rats through OECD guideline studies conducted by both the oral and inhalation routes of exposure. The animals were assessed for mortality, body weight, behavioral observations, and gross necropsy. Results from previously conducted (unpublished) acute inhalation studies with larger NiO microparticles (MPs) are also included for comparison. Mortality, the primary endpoint in acute toxicity studies, was not observed for rats exposed to NiO NPs via either the oral or inhalation exposure routes, with a determined LD50 of >5000 mg/kg and an LC50 > 5.42 mg/L, respectively. Our results suggest that these NiO NPs do not exhibit serious acute toxicity in rats or warrant an acute toxicity classification under the current GHS classification criteria. This aligns with similar results for NiO MPs from this and previously published studies.

3.
J Appl Toxicol ; 43(5): 734-751, 2023 05.
Article in English | MEDLINE | ID: mdl-36482046

ABSTRACT

Inhalation studies with nickel (Ni) subsulfide (Ni3 S2 ) and Ni sulfate hexahydrate (NiSO4 ·6H2 O) investigated differences in mode of action that could explain why the former induced lung tumors in rats and the latter did not. Male rats were exposed to ≤0.22 mg Ni/m3 NiSO4 ·6H2 O or 0.44 mg Ni/m3 Ni3 S2 , 6 h/day, 5 days/week for 3 and 13 weeks; subsets of the rats exposed for 13 weeks were held for an additional 13 weeks. Analyses of bronchoalveolar lavage fluid, isolated cells, and whole lung tissue were conducted to compare the extent and persistence of any induced lung effects. Histological findings were qualitatively identical for both compounds and consistent with lesions reported in earlier studies. After 13 weeks of exposure, the incidence and severity of pulmonary inflammation and epithelial cell hyperplasia were greater among Ni3 S2 -exposed rats, whereas the reverse response was seen for apoptosis. Only Ni3 S2 exposure significantly increased epithelial and non-epithelial cell proliferation after 13 weeks of exposure. Both compounds induced DNA damage in isolated lung cells and DNA hypermethylation of whole lung tissue after 13 weeks of exposure at the highest exposure concentrations. Increases in cell proliferation, DNA damage, and tissue DNA hypermethylation did not persist during the 13-week recovery period. In summary, the highest concentrations of each compound produced marked pulmonary toxicity, but the lowest concentrations produced minimal or no effects. Differences in the proliferative and apoptotic responses between the two compounds may help explain differences in carcinogenicity, whereas the identification of no observed adverse effect concentrations (NOAECs) contributes to the risk characterization for inhalation exposure to nickel compounds.


Subject(s)
Lung , Nickel , Rats , Male , Animals , Rats, Inbred F344 , Nickel/toxicity , Hyperplasia/pathology , DNA Damage , DNA
4.
Regul Toxicol Pharmacol ; 129: 105124, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35093462

ABSTRACT

Bioelution tests measure in vitro the release of metal ion in surrogate physiological conditions (termed "bioaccessibility") and estimate the potential bioavailability relative to that of a known reference metal substance. Bioaccessibility of cobalt ion from twelve cobalt substances was tested in three artificial lung fluids (interstitial, alveolar and lysosomal) to gather information about the substances' fate and potential bioavailability in the respiratory tract after inhalation. The results can be used as one line of evidence to support grouping and read-across for substances lacking in vivo data, and where in vivo testing is not readily justifiable. Strong differences were observed in the dissolution behaviour of the substances in the different fluids, with the cobalt substances generally being less soluble in neutral pH fluids and more soluble in the acidic pH fluid. The resulting database, presented with its strengths and limitations, was used to support the formulation of an initial grouping of these cobalt substances into three categories.


Subject(s)
Cobalt/adverse effects , Cobalt/chemistry , In Vitro Techniques/methods , Lung/drug effects , Administration, Inhalation , Cobalt/pharmacokinetics , Particle Size
5.
J Immunotoxicol ; 18(1): 144-153, 2021 12.
Article in English | MEDLINE | ID: mdl-34644513

ABSTRACT

Nickel (Ni) in ambient air may vary regionally with contributions from both natural processes and anthropogenic activities. Exposure to Ni compounds in ambient air above a certain level is associated with acute adverse effects, such as upper respiratory tract irritation, pneumonitis, and chronic adverse effects, such as respiratory cancer. Inhalation reference exposure standards are enacted in different jurisdictions to minimize exposures to ambient Ni above levels that can elicit adverse effects. This paper reports a guideline-/GLP-compliant study designed for setting inhalation exposure standards to protect from immunological effects associated with acute exposure to Ni. Female CD-1 mice were exposed via whole-body inhalation to aerosolized nickel chloride hexahydrate for 24-hr at nominal (vs. mean analyzed) concentrations of 20 (16), 50 (44) and 100 (81) µg Ni/m3. Host T-cell antibody immunological responses to intravenously-injected sheep red blood cells were then measured ex vivo in an Antibody-Forming Cell (AFC) assay. Exposure to the Ni substance significantly decreased spleen cell levels by 33%, but this was within biological variability for outbred mice. No concurrent decreases in spleen, thymus, or body weights were noted. No immunosuppression was observed with the Ni substance in the context of Total Spleen Activity [IgM AFC/spleen (× 103)] and Specific Activity [IgM AFC/spleen cells (× 106)]. Significant concentration-independent increases in Total Spleen Activity and Specific Activity seen with the nickel chloride hexahydrate were normal and within biological variability for outbred mice. In contrast, cyclophosphamide (positive control) significantly decreased spleen cell numbers, spleen and thymus weights, and abolished Specific Activity and Total Spleen Activity. Based on results here, an NOAEC of 81 µg Ni/m3 for immunosuppressive effects from inhaled nickel chloride hexahydrate was identified. It is hoped this value can be used to derive a reference standard for human exposure to ambient Ni.


Subject(s)
Inhalation Exposure , Nickel , Animals , Anthropogenic Effects , Antibody Formation , Chlorides , Female , Inhalation Exposure/adverse effects , Mice , Nickel/analysis , Nickel/toxicity , Sheep
6.
Regul Toxicol Pharmacol ; 117: 104754, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32777432

ABSTRACT

The oral bioaccessibility of copper alloys and pure metals was assessed using in vitro methods with synthetic saliva and gastric fluid. The metal-specific migration rates from polished alloy surfaces are higher in gastric (pH 1.5) than in saliva fluid (pH 7.2). In both media, migrations are higher for lead than for other metals. The bioaccessible metal concentrations in massive copper alloys, after 2 h in gastric fluid, was only <0.01%-0.18%, consistent with the low surface reactivity of copper alloys (defined as 1 mm spheres). The average metal-specific migrations of cobalt, copper, nickel and lead from most of the tested copper alloys in gastric media are comparable to the ones from their pure metals. The data further show that the bioaccessibility of metals in massive copper alloys primarily depends on the bioelution medium, the exposed surface area and the composition of the alloy. The tested copper alloys show only limited evidence for influence of alloy surface microstructure. This is contrary to findings for other alloys such as stainless steel. Additional investigations on other copper alloys could allow to further refine these conclusions. These findings are useful for establishing the hazard and risk profile of copper alloys following oral exposure.


Subject(s)
Alloys/analysis , Copper/analysis , Gastric Juice/chemistry , Saliva/chemistry , Alloys/metabolism , Animals , Biological Availability , Copper/metabolism , Foreign-Body Migration/metabolism , Gastric Juice/drug effects , Gastric Juice/metabolism , Humans , Saliva/drug effects , Saliva/metabolism , Swine
7.
Mutat Res ; 819-820: 111688, 2020.
Article in English | MEDLINE | ID: mdl-32014793

ABSTRACT

Nickel metal is a naturally occurring element used in many industrial and consumer applications. Human epidemiological data and animal cancer bioassays indicate that nickel metal is not likely to be a human carcinogen. Yet, nickel metal is classified as a suspected human carcinogen (CLP) and possibly carcinogenic to humans (IARC). There are no reliable studies on the potential for nickel metal to induce gene and micronucleus (MN) mutations. To fill these datagaps and increase our understanding of the mechanisms underlying the lack of nickel metal carcinogenicity, gene and micronucleus mutation studies were conducted with nickel metal powder (N36F) in V79 Chinese Hamster cells following OECD 476 and 487 guidelines, respectively, under GLP. Gene mutation at the hprt locus was tested, with and without metabolic activation, after 4-h treatment with 0.05-2.5 mM nickel metal powder. Cytokinesis-block MN frequency following exposure to 0.25-1.5 mM nickel metal was tested after 4-h treatment, with and without metabolic activation, followed by a 24-h treatment without metabolic activation. In the gene mutation assay, there were modest increases in hprt mutants observed at some test concentrations, not exceeding 2.2-fold, which were either within the historical control values and/or showed no concentration-response trend. The positive controls showed increases of at least 7-fold. Likewise, no increases in the MN frequency exceeding 1.5-fold were observed with nickel metal, with no concentration-response trends. Taking these results together, it can be concluded that nickel metal is non-mutagenic and does not cause gene nor chromosomal mutations.


Subject(s)
Environmental Pollutants/pharmacology , Hypoxanthine Phosphoribosyltransferase/genetics , Mutation , Nickel/pharmacology , Animals , CHO Cells , Chromosome Aberrations/drug effects , Cricetulus , Gene Expression , Micronuclei, Chromosome-Defective/drug effects , Micronucleus Tests , Mutagenicity Tests , Powders
8.
Regul Toxicol Pharmacol ; 110: 104549, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31811877

ABSTRACT

This study investigated nickel and cobalt ion release from the metals and several alloys in synthetic gastric, as well as interstitial and lysosomal lung fluids. Results were used to calculate the relative bioaccessible concentrations (RBCs) of the metals. Nickel release from SS 316L powder in gastric fluid was >300-fold lower than from a simple mixture of powders of the same bulk composition. Gastric bioaccessibility data showed 50-fold higher metal releases per gram of sample from powder than massive forms. RBCs of nickel and cobalt in the alloy powders were lower, equal, or higher in all fluids tested than their bulk concentrations. This illustrates the fact that matrix effects can increase or decrease the metal ion release, depending on the metal ingredients, alloy type, and fluid, consistent with research by others. Acute inhalation toxicity studies with cobalt-containing alloy powders showed that the RBC of cobalt in interstitial lung fluid predicted acute toxicity better than bulk concentration. This example indicates that the RBC of a metal in an alloy may estimate the concentration of bioavailable metals better than the bulk concentration, and the approach may provide a means to refine the classification of alloys for several human health endpoints.


Subject(s)
Alloys/chemistry , Cobalt/chemistry , Nickel/chemistry , Administration, Inhalation , Alloys/classification , Alloys/pharmacokinetics , Alloys/toxicity , Animals , Biological Availability , Cobalt/pharmacokinetics , Cobalt/toxicity , Erythrocytes/drug effects , Extracellular Fluid/chemistry , Female , Gastric Juice/chemistry , Humans , Lethal Dose 50 , Lung , Lysosomes/chemistry , Male , Nickel/pharmacokinetics , Nickel/toxicity , Rats, Sprague-Dawley , Risk Assessment/methods
9.
Regul Toxicol Pharmacol ; 87 Suppl 1: S1-S18, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28300623

ABSTRACT

Nickel (Ni) is in the earth's crust and can be found in environmental compartments such as water, soil, and air, as well as food. This paper presents an assessment of the oral nickel toxicity data in support of non-cancer health-based oral exposure limits or toxicity reference values (TRVs). This paper derives TRVs for three populations of interest: adults, toddlers, and people who have been dermally sensitized to nickel. The adult/lifetime TRV of 20 µg Ni/kg-day is based on post-implantation loss/perinatal mortality in a 2-generation reproductive study in rats. Several recent assessments by regulatory agencies have used the same study and endpoint, but the dose-response modeling conducted here was more appropriate for the study design. Toxicokinetic data from rats and humans indicate that the applied uncertainty factors are very conservative. Because the endpoint relates to fetal exposure and is not relevant to toddlers, a toddler TRV was derived based on decreased body weight in young rats; this TRV was also 20 µg Ni/kg-day. A separate TRV of 4 µg Ni/kg in addition to Ni in food was derived for protection of nickel-sensitized populations from flare-up of dermatitis, based on studies of single exposures in humans under conditions that maximize oral absorption.


Subject(s)
Nickel/toxicity , Adult , Animals , Body Weight , Child, Preschool , Dose-Response Relationship, Drug , Drug Hypersensitivity/etiology , Female , Food , Humans , Infant , Pregnancy , Rats , Reference Values , Reproduction , Uncertainty
10.
Basic Clin Pharmacol Toxicol ; 121 Suppl 3: 8-9, 2017 09.
Article in English | MEDLINE | ID: mdl-28229534
11.
J Aerosol Sci ; 99: 40-45, 2016 09.
Article in English | MEDLINE | ID: mdl-27721518

ABSTRACT

Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM10, inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported.

12.
Sci Total Environ ; 521-522: 359-71, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25863314

ABSTRACT

The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Inhalation Exposure/statistics & numerical data , Nickel/analysis , Europe , Humans , Models, Theoretical
13.
Inhal Toxicol ; 26(9): 559-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25055843

ABSTRACT

Abstract Nickel (Ni) in ambient air is predominantly present in the form of oxides and sulfates, with the distribution of Ni mass between the fine (particle aerodynamic diameter < 2.5 µm; PM2.5) and coarser (2.5-10 µm) size-selected aerosol fractions of PM10 dependent on the aerosol's origin. When deriving a long-term health protective reference concentration for Ni in ambient air, the respiratory toxicity and carcinogenicity effects of the predominant Ni compounds in ambient air must be considered. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rats, workers, and the general public were applied to experimentally- and epidemiologically-determined points of departure (PODs) such as no(low)-effect concentrations, for both cancer and non-cancer respiratory effects. This approach resulted in the derivation of threshold-based PM10 size-selected equivalent concentrations (modified PODs) of 0.5 µg Ni/m(3) based on workers' cancer effects and 9-11 µg Ni/m(3) based on rodent respiratory toxicity effects. Sources of uncertainty in exposure extrapolations are described. These are not reference concentrations; rather the derived PM10 size-selected modified PODs can be used as the starting point for the calculation of ambient air reference concentrations for Ni. The described approach is equally applicable to other particulates.


Subject(s)
Environmental Monitoring/methods , Nickel/toxicity , Particle Size , Respiratory System/drug effects , Administration, Inhalation , Aerosols/chemistry , Air Pollutants/toxicity , Animals , Dose-Response Relationship, Drug , Humans , Models, Theoretical , Neoplasms/chemically induced , Neoplasms/pathology , Particulate Matter/toxicity , Rats , Respiratory System/pathology , Toxicity Tests, Chronic
14.
Regul Toxicol Pharmacol ; 70(1): 170-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24979734

ABSTRACT

Bioelution assays are fast, simple alternatives to in vivo testing. In this study, the intra- and inter-laboratory variability in bioaccessibility data generated by bioelution tests were evaluated in synthetic fluids relevant to oral, inhalation, and dermal exposure. Using one defined protocol, five laboratories measured metal release from cobalt oxide, cobalt powder, copper concentrate, Inconel alloy, leaded brass alloy, and nickel sulfate hexahydrate. Standard deviations of repeatability (sr) and reproducibility (sR) were used to evaluate the intra- and inter-laboratory variability, respectively. Examination of the sR:sr ratios demonstrated that, while gastric and lysosomal fluids had reasonably good reproducibility, other fluids did not show as good concordance between laboratories. Relative standard deviation (RSD) analysis showed more favorable reproducibility outcomes for some data sets; overall results varied more between- than within-laboratories. RSD analysis of sr showed good within-laboratory variability for all conditions except some metals in interstitial fluid. In general, these findings indicate that absolute bioaccessibility results in some biological fluids may vary between different laboratories. However, for most applications, measures of relative bioaccessibility are needed, diminishing the requirement for high inter-laboratory reproducibility in absolute metal releases. The inter-laboratory exercise suggests that the degrees of freedom within the protocol need to be addressed.


Subject(s)
Body Fluids/metabolism , Laboratories/standards , Metals/analysis , Humans , Metals/chemistry , Reproducibility of Results
15.
Regul Toxicol Pharmacol ; 63(1): 20-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22369872

ABSTRACT

In vitro metal ion bioaccessibility, as a measure of bioavailability, can be used to read-across toxicity information from data-rich, source substances to data-poor, target substances. To meet the data requirements for oral systemic toxicity endpoints under the REACH Regulation in Europe, 12 nickel substances underwent bioaccessibility testing in stomach and intestinal fluids. A read-across paradigm was developed based on the correlation between gastric bioaccessibility and in vivo acute oral toxicity. The oral LD50 values were well predicted by nickel release (R² = 0.91). Samples releasing <48% available nickel (mgNi released/mg available Ni × 100) are predicted to have an LD50 > 2000 mg/kg; while samples releasing > 76% available nickel are expected to have an LD50 between 300 and 2000 mg/kg. The hazard classifications (European Regulation on Classification, Labelling and Packaging of Chemical Substances and Mixtures) for all oral systemic endpoints were evaluated based on read-across from three source nickel compounds (sulfate, subsulfide, oxide). Samples releasing < 48% available nickel were read-across from nickel oxides and subsulfide. Samples releasing > 76% Ni were read-across from nickel sulfate. This assessment suggests that nickel chloride and dihydroxide should be less stringently classified and nickel sulfamate should receive a more stringent classification for oral systemic endpoints than currently assigned.


Subject(s)
Gastric Mucosa/metabolism , Nickel/toxicity , Risk Assessment/methods , Administration, Oral , Animals , Biological Availability , Gastric Juice/chemistry , Humans , Intestinal Absorption , Intestinal Secretions/chemistry , Nickel/administration & dosage , Nickel/pharmacokinetics , Toxicity Tests
16.
Regul Toxicol Pharmacol ; 62(3): 425-32, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22333739

ABSTRACT

Acute oral toxicity studies were conducted on samples of nine unique nickel compounds and two complex materials to comply with the data and classification requirements of the new Registration, Evaluation, and Authorization of Chemicals Regulation (REACH) in Europe. The samples tested in this study confirmed the overall low oral toxicity of nickel substances and demonstrated a wide range of LD(50) values extending from 310 to >11,000 mg/kg. This variation highlights the differences in toxicological properties between various forms of nickel and underscores the importance of Ni(II) ion bioavailability in determining toxicity. The relative acute oral toxicity of the various nickel substances was found to be: nickel fluoride, nickel sulfate, nickel chloride, nickel acetate > nickel sulfamate > nickel hydroxycarbonate > nickel dihydroxide >> nickel subsulfide, nickel oxides, nickel ash, nickel mattes. Based on these data, four nickel compounds would receive a Category 4 acute toxicity classification according to the European Regulation on Classification, Labelling and Packaging of Chemical Substances and Mixtures (CLP), while the rest of the nickel substances tested fit the criterion for no classification. These data also provided the in vivo verification needed to perform read-across for additional oral toxicity endpoints and nickel substances.


Subject(s)
Nickel/administration & dosage , Nickel/toxicity , Toxicity Tests, Acute/methods , Animals , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Nickel/chemistry , Rats , Rats, Sprague-Dawley , Toxicity Tests, Acute/standards
17.
Sci Total Environ ; 419: 25-36, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22285091

ABSTRACT

This paper describes the indirect human exposure to Ni via the oral route for the regional scale in the EU, together with a method to assess additional local exposure from industrial emissions. The approach fills a gap in the generic REACH guidance which is inadequate for assessing indirect environmental exposure of metals. Estimates of regional scale Ni dietary intake were derived from Ni dietary studies performed in the EU. Typical and Reasonable Worst Case dietary Ni intakes for the general population in the EU were below the oral Derived No Effect Level (DNEL) of Ni sulfate for systemic effects. Estimates for the Ni dietary intake at the local scale take into account the influence of aerial Ni deposition and transfer from soil to crops grown near industrial plants emitting Ni. The additional dietary exposure via this local contribution was small. Despite the use of conservative parameters for these processes, this method may underestimate dietary exposure around older industrial sites because REACH guidance does not account for historical soil contamination. Nevertheless, the method developed here can also be used as a screening tool for community-based risk assessment, as it accounts for historical soil pollution. Nickel exposure via drinking water was derived from databases on Ni tap water quality. A small proportion of the EU population (<5%) is likely to be exposed to tap water exceeding the EU standard (20 µg Ni/l). Taking into account the relative gastrointestinal absorption of Ni from water (30%) versus from solid matrices (5%), water intake constitutes, after dietary intake, the second most important pathway for oral Ni intake. Incidental ingestion of Ni from soil/dust at the regional scale, and also at the local scale, was low in comparison with dietary intake.


Subject(s)
Environmental Exposure , Environmental Monitoring/methods , Environmental Pollutants/toxicity , Nickel/toxicity , Risk Assessment , Drinking Water/analysis , Dust/analysis , Environmental Pollutants/analysis , European Union , Female , Food Analysis , Humans , Male , Nickel/analysis , Soil/analysis
18.
Crit Rev Toxicol ; 41(2): 142-74, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21158697

ABSTRACT

The inhalation of nickel-containing dust has been associated with an increased risk of respiratory cancer in workplaces that process and refine sulfidic nickel mattes, where workers are exposed to mixtures of sulfidic, oxidic, water-soluble, and metallic forms of nickel. Because there is great complexity in the physical and chemical properties of nickel species, it is of interest which specific nickel forms are associated with carcinogenic risk. A bioavailability model for tumor induction by nickel has been proposed, based on the results of animal inhalation bioassays conducted on four nickel-containing substances. The nickel ion bioavailability model holds that a nickel-containing substance must release nickel ions that become bioavailable at the nucleus of epithelial respiratory cells for the substance to be carcinogenic, and that the carcinogenic potency of the substance is proportional to the degree to which the nickel ions are bioavailable at that site. This hypothesis updates the nickel ion theory, which holds that exposure to any nickel-containing substance leads to an increased cancer risk. The bioavailability of nickel ions from nickel-containing substances depends on their respiratory toxicity, clearance, intracellular uptake, and both extracellular and intracellular dissolution. Although some data gaps were identified, a weight-of-evidence evaluation indicates that the nickel ion bioavailability model may explain the existing animal and in vitro data better than the nickel ion theory. Epidemiological data are not sufficiently robust for determining which model is most appropriate, but are consistent with the nickel ion bioavailability model. Information on nickel bioavailability should be incorporated into future risk assessments.


Subject(s)
Air Pollutants, Occupational/pharmacokinetics , Carcinogens, Environmental/pharmacokinetics , Lung/metabolism , Nickel/pharmacokinetics , Animals , Biological Availability , Humans , Inhalation Exposure , Lung/drug effects , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism
19.
Regul Toxicol Pharmacol ; 57(2-3): 181-94, 2010.
Article in English | MEDLINE | ID: mdl-20172011

ABSTRACT

Inhalation animal studies usually employ homogeneous aerosols of small particle diameter. By contrast, workers are usually exposed to coarser and more heterogeneous aerosols. The particle size distribution of an aerosol will determine the deposited fraction of inhaled particles in the various regions of the respiratory tract in rodents and humans. The deposited, and subsequently retained, doses in these regions correlate closely with long-term toxic effects. Yet, differences in deposited doses between animals and humans due to particle size differences of aerosols have not been consistently taken into account in risk assessment. This paper describes an approach to calculate equivalent human concentrations (EHC) for respiratory tract effects after inhalation using workplace particle size information. Worker's exposure to the EHC results in the same deposited dose in the respiratory tract as achieved in animals exposed to the experimental particle size distribution. Example data for nickel compounds demonstrate that exposure levels used in the rat studies are equivalent to 4-11-fold higher levels of human workplace exposures. This approach is equally applicable to other metal/inorganic particulates that exert adverse effects on the respiratory tract after inhalation. Dosimetric extrapolation should be a first step in the derivation of limit values based on animal local respiratory effects.


Subject(s)
Inhalation Exposure/analysis , Occupational Exposure/analysis , Particulate Matter/analysis , Respiratory System/metabolism , Aerosols , Animals , Humans , Inhalation Exposure/adverse effects , Maximum Allowable Concentration , Occupational Exposure/adverse effects , Particle Size , Particulate Matter/pharmacokinetics , Particulate Matter/toxicity , Rats , Respiratory System/drug effects , Species Specificity , Threshold Limit Values , Tissue Distribution
20.
J Environ Monit ; 11(9): 1697-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19724840

ABSTRACT

Leaching in ammonium citrate has been extensively used to assess the fraction of water-soluble nickel compounds present in nickel producing and using workplace aerosols. Leaching in ammonium citrate according to the first step of the Zatka protocol was found to overestimate the water-soluble nickel fraction by more than ten-fold compared to synthetic lung fluid (37 degrees C), when nickel carbonate and subsulfide were present. These results suggest that exposure matrices based on this method should be reexamined. Leaching studies of refinery particles are needed to further clarify this important issue.


Subject(s)
Chemical Fractionation/methods , Citric Acid/analysis , Nickel/analysis , Quaternary Ammonium Compounds/analysis , Temperature , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...