Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 145(3): 950-963, 2022 04 29.
Article in English | MEDLINE | ID: mdl-34528073

ABSTRACT

First-in-line benzodiazepine treatment fails to terminate seizures in about 30% of epilepsy patients, highlighting a need for novel anti-seizure strategies. It is emerging that impaired K+/Cl- cotransporter 2 (KCC2) activity leads to deficits in GABAergic inhibition and increased seizure vulnerability in patients. In neurons, the with-no-lysine (WNK) kinase-STE20/SPS1-related proline/alanine-rich (SPAK) kinase signalling pathway inhibits KCC2 activity via T1007 phosphorylation. Here, we exploit the selective WNK kinase inhibitor WNK463 to test the effects of pharmacological WNK inhibition on KCC2 function, GABAergic inhibition, and epileptiform activity. Immunoprecipitation and western blotting analysis revealed that WNK463 reduces KCC2-T1007 phosphorylation in vitro and in vivo. Using patch-clamp recordings in primary rat neurons, we further observed that WNK463 hyperpolarized the Cl- reversal potential, and enhanced KCC2-mediated Cl- extrusion. In the 4-aminopyridine slice model of acute seizures, WNK463 administration reduced the frequency and number of seizure-like events. In vivo, C57BL/6 mice that received intrahippocampal WNK463 experienced delayed onset of kainic acid-induced status epilepticus, less epileptiform EEG activity, and did not develop pharmaco-resistance to diazepam. Our findings demonstrate that acute WNK463 treatment potentiates KCC2 activity in neurons and limits seizure burden in two well-established models of seizures and epilepsy. In summary, our work suggests that agents which act to increase KCC2 activity may be useful adjunct therapeutics to alleviate diazepam-resistant status epilepticus.


Subject(s)
Epilepsy , Status Epilepticus , Symporters , Animals , Diazepam/metabolism , Diazepam/pharmacology , Hippocampus/metabolism , Humans , Lysine/metabolism , Mice , Mice, Inbred C57BL , Rats , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Symporters/metabolism
2.
Article in English | MEDLINE | ID: mdl-33953821

ABSTRACT

As the world deals with a pandemic, there remains another global challenge that cannot be ignored. Use of broad-spectrum antibiotics may be justified as we are trying to treat a novel disease condition, which in turn could lead to an increase in antimicrobial resistance. We can decrease morbidity, mortality, and health care costs by controlling antimicrobial resistance, but it requires antimicrobial stewardship. Major components of effective and timely antimicrobial stewardship are diagnostic stewardship, infection prevention and control, and integration of COVID-19 specific flags into electronic health records, all of which may be integrated into current strategies of COVID-19 mitigation and management. Going through the influenza season of 2020, implementation of antimicrobial stewardship education efforts in the United States can help us contend with influenza in addition to COVID-19 and any bacterial co-infections or secondary infections. Additional solutions include the development of vaccines, alternative therapies such as antibodies, and advanced diagnostics using advances in genomics and computer science.

3.
Cell Rep ; 28(3): 670-681.e8, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315046

ABSTRACT

The fidelity of inhibitory neurotransmission is dependent on the accumulation of γ-aminobutyric acid type A receptors (GABAARs) at the appropriate synaptic sites. Synaptic GABAARs are constructed from α(1-3), ß(1-3), and γ2 subunits, and neurons can target these subtypes to specific synapses. Here, we identify a 15-amino acid inhibitory synapse targeting motif (ISTM) within the α2 subunit that promotes the association between GABAARs and the inhibitory scaffold proteins collybistin and gephyrin. Using mice in which the ISTM has been introduced into the α1 subunit (Gabra1-2 mice), we show that the ISTM is critical for axo-axonic synapse formation, the efficacy of GABAergic neurotransmission, and seizure sensitivity. The Gabra1-2 mutation rescues seizure-induced lethality in Gabra2-1 mice, which lack axo-axonic synapses due to the deletion of the ISTM from the α2 subunit. Taken together, our data demonstrate that the ISTM plays a critical role in promoting inhibitory synapse formation, both in the axonic and somatodendritic compartments.


Subject(s)
Amino Acid Motifs/genetics , Axons/metabolism , GABAergic Neurons/metabolism , Receptors, GABA-A/metabolism , Seizures/metabolism , Synapses/metabolism , Animals , Axons/physiology , Cells, Cultured , GABAergic Neurons/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Receptors, GABA-A/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Seizures/genetics , Seizures/mortality , Synapses/genetics , Synaptic Transmission/physiology
4.
EBioMedicine ; 32: 62-71, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29884458

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is the most common form of epilepsy, believed to arise in part from compromised GABAergic inhibition. The neuronal specific K+/Cl- co-transporter 2 (KCC2) is a critical determinant of the efficacy of GABAergic inhibition and deficits in its activity are observed in mTLE patients and animal models of epilepsy. To test if reductions of KCC2 activity directly contribute to the pathophysiology of mTLE, we locally ablated KCC2 expression in a subset of principal neurons within the adult hippocampus. Deletion of KCC2 resulted in compromised GABAergic inhibition and the development of spontaneous, recurrent generalized seizures. Moreover, local ablation of KCC2 activity resulted in hippocampal sclerosis, a key pathological change seen in mTLE. Collectively, our results demonstrate that local deficits in KCC2 activity within the hippocampus are sufficient to precipitate mTLE.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Neurons/metabolism , Symporters/genetics , gamma-Aminobutyric Acid/genetics , Adult , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/physiopathology , Female , Genetic Vectors/genetics , Genotype , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Neurons/pathology , gamma-Aminobutyric Acid/metabolism , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...