Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(9): 5988-5999, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38602478

ABSTRACT

Cyclam, known for its potent chelation properties, is explored for diverse applications through selective N-functionalization, offering versatile ligands for catalysis, medical research, and materials science. The challenges arising from N-alkylation, which could decrease the coordination properties, are addressed by introducing a robust C-functionalization method. The facile two-step synthesis proposed here involves the click chemistry-based C-functionalization of a hydroxyethyl cyclam derivative using Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). Boc-protecting groups prevent undesired copper coordination, resulting in compounds with a wide range of functionalities. The optimized synthesis conditions enable C-functional cyclams to be obtained easily and advantageously, with high application potential in the previously cited fields. The methodology has been extended to trehalose-based Siamese twin amphiphiles, enabling efficient gene delivery applications.

2.
J Mater Chem B ; 12(14): 3445-3452, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502035

ABSTRACT

A novel family of precision-engineered gene vectors with well-defined structures built on trehalose and trehalose-based macrocycles (cyclotrehalans) comprising linear or cyclic polyamine heads have been synthesized through procedures that exploit click chemistry reactions. The strategy was conceived to enable systematic structural variations and, at the same time, ensuring that enantiomerically pure vectors are obtained. Notably, changes in the molecular architecture translated into topological differences at the nanoscale upon co-assembly with plasmid DNA, especially regarding the presence of regions with short- or long-range internal order as observed by TEM. In vitro and in vivo experiments further evidenced a significant impact on cell and organ transfection selectivity. Altogether, the results highlight the potential of trehalose-polyamine/pDNA nanocomplex monoformulations to achieve targeting transfection without the need for any additional cell- or organ-sorting component.


Subject(s)
Polyamines , Trehalose , Trehalose/chemistry , Polyamines/chemistry , Transfection , DNA/genetics , DNA/chemistry , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...