Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 68(2): 211-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092991

ABSTRACT

Given the climate projections for livestock rearing regions globally, understanding the inflammatory status of livestock under various heat loads will be informative to animal welfare and management. A survey of plasma inflammatory markers was conducted, and blood leucocyte counts followed to investigate the capacity of the ~ 500 kg grain fed Black Angus steer to respond to and recover from a moderate heat load challenge. Two sequential cohorts of 12 steers were housed in climate-controlled rooms (CCR) for 18 days. A thermally challenged (TC) group (n = 2 × 6) experienced five consecutive periods: PreChallenge, Challenge, and Recovery within the CCR, and 40 days in outdoor pens (PENS and Late PENS). PreChallenge (5 days) and Recovery (7 days) delivered thermoneutral conditions, whereas in Challenge the TC steers experienced a diurnal temperature range of 28-35 °C. A feed-restricted thermoneutral (FRTN) treatment (n = 2 × 6) was run concurrently to differentiate between responses to reduced feed intake alone and moderate heat stress. Blood neutrophil counts were particularly sensitive to moderate heat load with higher numbers during Challlenge and in PENs. The plasma concentrations of TNFα and IL-1ß were depressed in the TC group compared to the FRTN counterparts and remained so for 40 days after Challenge. Linear relationships of the concentrations of IL-1ß, IL-10, and haptoglobin with rumen temperature or dry matter intake detected in the FRTN group were altered or absent in the TC group. The findings suggest significant impacts of moderate heat load on the inflammatory status of feedlot cattle.


Subject(s)
Animal Feed , Eating , Cattle , Animals , Animal Feed/analysis , Temperature , Eating/physiology , Body Temperature Regulation/physiology , Edible Grain , Leukocytes , Diet/veterinary
2.
Int J Biometeorol ; 67(5): 897-911, 2023 May.
Article in English | MEDLINE | ID: mdl-37041373

ABSTRACT

We set out to determine the impact of moderate heat load on the plasma concentrations of a suite of hormones involved in regulating energy metabolism and feed intake. The responses of the thermally challenged (TC) feedlot steers were compared to those of feed restricted thermoneutral (FRTN) steers. Two sequential cohorts of twelve 518 ± 23 kg Black Angus steers on finisher grain ration were housed in climate-controlled rooms (CCR) for 18 days and returned to outdoor pens for 40 days. The TC group was subjected to a diurnal range of 28-35 °C for 7 days (Challenge) but held in thermoneutral conditions beforehand (PreChallenge), and in Recovery (after Challenge). The FRTN group was held in thermoneutral conditions and feed restricted throughout. Blood was collected over the three periods in CCR and two periods in outdoor pens for 40 days (PENS and Late PENS). Plasma concentrations of prolactin, thyroid stimulating hormone, insulin, leptin, adiponectin and thyroxine (T4) were determined during the five periods. Whilst the pituitary hormones were relatively stable, there were differences in plasma leptin, adiponectin and T4 between the two groups during Challenge and Recovery, and occasionally in PENS. The interaction of the plasma hormone concentrations and rumen temperature and DMI were also investigated. Whilst the positive relationship between DMI and leptin was confirmed, we found a strong negative relationship between adiponectin and rumen temperature, and a strong positive relationship between adiponectin and dry matter intake (DMI) in the TC steers only.


Subject(s)
Hot Temperature , Leptin , Cattle , Animals , Adiponectin , Animal Feed/analysis , Eating/physiology , Diet/veterinary
3.
Int J Biometeorol ; 66(11): 2205-2221, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963925

ABSTRACT

Responses to heat stress in ruminants reflect the integration of local climatic conditions, environment/production system and the animal's homeostatic and homeorhetic capacities. Thus, the goal of ameliorating heat stress requires experimental settings that, within limits, closely resemble the target production system and cohort. We investigated the blood biochemical changes of two sequential cohorts of twelve 518 ± 23 kg grain fed Black Angus steers. Each cohort consisted of two treatments of 6 head/group: a thermally challenged (TC) treatment and a feed restricted thermoneutral (FRTN) treatment. Both groups were housed in climate controlled rooms for 19 days, with the TC group experiencing three distinct periods: PreChallenge, Challenge and Recovery. PreChallenge and Recovery delivered thermoneutral conditions, while Challenge consisted of 7 days of moderate diurnal heat load. The FRTN group was maintained in thermoneutral conditions at all times. Both groups were then relocated to outdoor pens for a further 40 days to detect any enduring change to metabolism as a consequence of the treatments. We compared blood biochemical responses of the treatments and inferred likely metabolic changes. Relative to the FRTN group, the TC animals experienced limited supply of triglycerides, cholesterol and glutamine during moderate heat load, suggesting constraints to energy metabolism. Lower blood urea during Recovery and in outdoor pens implied a requirement to capture N rather than allow its excretion. Altered liver enzyme profiles indicated a higher level of hepatic stress in the TC group. By the completion of feedlot finishing, the groups were not separable on most measures.


Subject(s)
Animal Feed , Heat Stress Disorders , Cattle , Animals , Animal Feed/analysis , Edible Grain , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat-Shock Response , Nitrogen , Diet/veterinary
4.
Int J Biometeorol ; 66(2): 275-288, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34264388

ABSTRACT

The objective of this study was to evaluate the influence of supplementing lactating dairy cows with Saccharomyces cerevisiae on milk production and composition, cow behavior, and physiological responses during summer. Twenty primiparous cows were used and two treatments were imposed: (1) control (CON); and (2) probiotic supplementation (PRO; S. cerevisiae, providing 1010 colony forming units (CFU) per day). Rumen temperature (TRUM, °C) and pH were obtained via rumen boluses. Rumen temperatures were obtained from all cows (n = 20) at 10-min intervals and ruminal pH were obtained from five cow pairs (n = 10) at 10-min intervals. Ambient temperature (TA; °C), relative humidity (RH; %), wind speed (WS; m/s), and solar radiation (SR; W/m2) were recorded at 10-min intervals. The temperature humidity index (THI) was calculated using TA and RH. Cows were milked twice daily. Milk fat (%), protein (%), lactose (%), and somatic cell count (SCC, '000) were evaluated on 16 occasions. Cows were observed three times (0800 h; 1200 h; and 1400 h) daily for panting score (PS); respiration rate (RR); posture (standing/lying); shade utilization; and cow activity (eating/drinking/ruminating). Individual PS were used to calculate a mean panting score (MPS) for CON and PRO treatments for each observation. S. cerevisiae did not influence milk yield (P = 0.87), fat (P = 0.82), protein (P = 0.26) or SCC (P = 0.19), although there was a tendency for PRO cows to have higher lactose (P = 0.06). Probiotics did not influence the proportion of cows utilizing shade (P = 0.42); standing (P = 0.41); ruminating (P = 0.72); or drinking (P = 0.40). All cows exhibited an increase in RR (> 24 bpm) at 1200 h and RR showed a steady increase as THI increased (P < 0.0001), regardless of treatment (P = 0.96). Both CON (35.8%) and PRO (40.2%) exhibited an increase in MPS as THI increased from thermoneutral (THI ≤ 74) to very hot (THI ≥ 84.1; P < 0.001). However, PRO cows had lower (2.19 ± 0.09; P < 0.0001) MPS compared with CON (2.54 ± 0.22) cows when THI was categorized as very hot (THI ≥ 84.1). Rumen pH were not influenced by treatment (P = 0.38), however TRUM of PRO cows were 0.2 °C lower across days (P < 0.0001) and hours (P < 0.0001). These results suggest that supplementing cows with S. cerevisiae may support thermoregulation via decreased TRUM and MPS; however, further studies are required.


Subject(s)
Lactation , Saccharomyces cerevisiae , Animals , Cattle , Diet/veterinary , Female , Hot Temperature , Humidity , Milk
5.
Int J Biometeorol ; 63(7): 973-978, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30911881

ABSTRACT

When exposed to hot conditions, heat dissipation via an increase in respiration rate (RR) is an important thermoregulatory mechanism for sheep. However, evaluating RR under field conditions is difficult. In cattle, a viable alternative has been to assess panting score (PS); therefore, the objective of this study was to evaluate the relationship between RR and PS to determine if a PS index can be used to evaluate heat load in sheep. One hundred and forty-four Merino wethers (44.02 ± 0.32 kg) were used within a climate-controlled study. The study was replicated twice over 29 days, where each replicate consisted of two treatments: (1) thermoneutral (TN) and (2) hot (HOT). Ambient temperature (TA) and relative humidity (RH) were maintained between 18 and 20 °C and 60 and 70% respectively for the TN treatment. For the HOT treatment, heat load increased steadily over the 29 days. Minimum TA was 22.5 °C and maximum was 38.5 °C, while RH decreased (60 to 30%) as TA increased in the HOT treatment. A comprehensive PS classification was developed by enhancing the current sheep PS index and aligning the descriptors with the current PS index utilized in beef cattle studies. Respiration rate and PS were obtained for each animal at 3-h intervals between 0800 h and 1700 h daily. These data were used to determine the mean RR for each PS, across the study and within the TN and HOT treatments. The relationship between PS and RR was evaluated using a Pearson's correlation coefficient. Data were also analyzed using a general linear model to determine the impact of PS, posture and animal identification (animal ID) on RR within each PS. Unsurprisingly, RR increased as PS increased, and PS, 0 and RR, 2.5 were 30.7 ± 0.59 and 246.8 ± 12.20 bpm respectively. There was a strong relationship between RR and PS (r = 0.71; P < 0.0001). As RR increased, sheep were more likely to be observed standing (P < 0.001). Mean PS of sheep within the HOT treatment (1.49 ± 0.02) were greater (P = 0.0085) when compared to the TN (1.17 ± 0.02) sheep. Individual animal ID accounted for approximately 7-37% of the variation observed for RR across PS, indicating that animal ID and climatic conditions were influencing RR and PS. These results suggest that the comprehensive PS index described here can be used as a visual appraisal of the heat load status of sheep.


Subject(s)
Body Temperature Regulation , Hot Temperature , Animals , Body Temperature , Cattle , Male , Respiratory Rate , Sheep
6.
Aust Vet J ; 93(5): 170-3, 2015 May.
Article in English | MEDLINE | ID: mdl-25939264

ABSTRACT

CASE REPORT: An 18-month-old Charolais steer was presented with lameness and fluctuant swelling of the right stifle joint, which yielded neutrophils on fine-needle aspiration. A diagnosis of bacterial proliferative tenosynovitis and arthritis was made on postmortem and histological examination. Culture and 16S rRNA sequencing identified a Nocardia sp. with 99% homology with the corresponding DNA fragment of N. mexicana DSM 44952. Antimicrobial susceptibility testing revealed the isolate was susceptible to co-trimoxazole and third-generation cephalosporins. CONCLUSION: We report the first case, both in Australia and internationally, of proliferative tenosynovitis and arthritis caused by Nocardia spp. infection in a bovine and the first report of pathology attributed to N. mexicana in a veterinary patient. Given the limited susceptibility of the bacteria, the poor antimicrobial penetration that would be expected and the morphological changes that had taken place in the joint; the steer would have required protracted antimicrobial treatment in addition to invasive debridement of the lesion. This case emphasises the importance of routinely performing cytology and extended incubation of cultures in cases of arthritis in order to make ethical and economically viable treatment decisions.


Subject(s)
Arthritis, Infectious/veterinary , Nocardia Infections/veterinary , Nocardia/isolation & purification , Tenosynovitis/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Arthritis, Infectious/etiology , Arthritis, Infectious/microbiology , Australia/epidemiology , Cattle , Cephalosporins/pharmacology , Male , Microbial Sensitivity Tests/veterinary , Nocardia/drug effects , Nocardia/genetics , Nocardia Infections/complications , Nocardia Infections/epidemiology , Nocardia Infections/microbiology , RNA, Ribosomal, 16S/genetics , Stifle/microbiology , Tenosynovitis/etiology , Tenosynovitis/microbiology , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...