Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 59(34): 10729-10738, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33361892

ABSTRACT

A novel, to the best of our knowledge, beam-shaping reflective surface for high-resolution millimeter/submillimeter-wave astronomy instruments is presented. The reflector design is based on Toraldo's super-resolution principle and implemented with annulated binary-phase coronae structure inspired by the achromatic magnetic mirror approach. A thin, less than half a free-space wavelength, reflective Toraldo pupil device operated in the W-band has been fabricated using mesh-filter technology developed at Cardiff University. The device has been characterized on a quasi-optical test bench and demonstrated expected reduction of the beam width upon reflection at oblique incidence, while featuring a sidelobe level lower than -10dB. The proposed reflective Toraldo pupil structure can be easily scaled for upper millimeter and infrared frequency bands as well as designed to transform a Gaussian beam into a flat-top beam with extremely low sidelobe level.

2.
Appl Opt ; 57(9): 2215-2222, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29604015

ABSTRACT

The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. In optical microscopy, several techniques have been successfully developed with the aim of narrowing the central lobe of the illumination point spread function. In astronomy, however, no similar techniques can be used. A feasible method to design antennas and telescopes with angular resolution better than the diffraction limit consists of using variable transmittance pupils. In particular, discrete binary phase masks (0 or π) with finite phase-jump positions, known as Toraldo pupils (TPs), have the advantage of being easy to fabricate but offer relatively little flexibility in terms of achieving specific trade-offs between design parameters, such as the angular width of the main lobe and the intensity of sidelobes. In this paper, we show that a complex transmittance filter (equivalent to a continuous TP, i.e., consisting of infinitely narrow concentric rings) can achieve more easily the desired trade-off between design parameters. We also show how the super-resolution effect can be generated with both amplitude- and phase-only masks and confirm the expected performance with electromagnetic numerical simulations in the microwave range.

3.
Nature ; 458(7239): 737-9, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19360081

ABSTRACT

Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 or= 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.

4.
Appl Opt ; 46(19): 4092-101, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17571151

ABSTRACT

The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

5.
Nature ; 443(7110): 427-9, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17006508

ABSTRACT

Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars approximately 10 times more massive than the Sun (approximately 10M(o)), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10M(o) exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass ( > 8M(o)) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude that the gas is falling inwards towards a very young star of approximately 20M(o), in line with theoretical predictions of non-spherical accretion.

SELECTION OF CITATIONS
SEARCH DETAIL
...