Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neural Dev ; 11: 1, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26782621

ABSTRACT

BACKGROUND: Shaping of the neural tube, the precursor of the brain and spinal cord, involves narrowing and elongation of the neural tissue, concomitantly with other morphogenetic changes that contribue to this process. In zebrafish, medial displacement of neural cells (neural convergence or NC), which drives the infolding and narrowing of the neural ectoderm, is mediated by polarized migration and cell elongation towards the dorsal midline. Failure to undergo proper NC results in severe neural tube defects, yet the molecular underpinnings of this process remain poorly understood. RESULTS: We investigated here the role of the microtubule (MT) cytoskeleton in mediating NC in zebrafish embryos using the MT destabilizing and hyperstabilizing drugs nocodazole and paclitaxel respectively. We found that MTs undergo major changes in organization and stability during neurulation and are required for the timely completion of NC by promoting cell elongation and polarity. We next examined the role of Microtubule-associated protein 1B (Map1b), previously shown to promote MT dynamicity in axons. map1b is expressed earlier than previously reported, in the developing neural tube and underlying mesoderm. Loss of Map1b function using morpholinos (MOs) or δMap1b (encoding a truncated Map1b protein product) resulted in delayed NC and duplication of the neural tube, a defect associated with impaired NC. We observed a loss of stable MTs in these embryos that is likely to contribute to the NC defect. Lastly, we found that Map1b mediates cell elongation in a cell autonomous manner and polarized protrusive activity, two cell behaviors that underlie NC and are MT-dependent. CONCLUSIONS: Together, these data highlight the importance of MTs in the early morphogenetic movements that shape the neural tube and reveal a novel role for the MT regulator Map1b in mediating cell elongation and polarized cell movement in neural progenitor cells.


Subject(s)
Microtubule-Associated Proteins/metabolism , Neural Tube/embryology , Neurulation , Zebrafish Proteins/metabolism , Animals , Cell Movement/drug effects , Cell Polarity/drug effects , Neural Tube/drug effects , Neural Tube/metabolism , Neurulation/drug effects , Nocodazole/administration & dosage , Paclitaxel/administration & dosage , Tubulin Modulators/administration & dosage , Zebrafish
2.
Eukaryot Cell ; 9(10): 1538-48, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20729291

ABSTRACT

Prm1 is a pheromone-regulated membrane glycoprotein involved in the plasma membrane fusion event of Saccharomyces cerevisiae mating. Although this function suggests that Prm1 should act at contact sites in pairs of mating yeast cells where plasma membrane fusion occurs, only a small percentage of the total Prm1 was actually detected on the plasma membrane. We therefore investigated the intracellular transport of Prm1 and how this transport contributes to cell fusion. Two Prm1 chimeras that were sorted away from the contact site had reduced fusion activity, indicating that Prm1 indeed functions at contact sites. However, most Prm1 is located in endosomes and other cytoplasmic organelles and is targeted to vacuoles for degradation. Mutations in a putative endocytosis signal in a cytoplasmic loop partially stabilized the Prm1 protein and caused it to accumulate on the plasma membrane, but this endocytosis mutant actually had reduced mating activity. When Prm1 was expressed from a galactose-regulated promoter and its synthesis was repressed at the start of mating, vanishingly small amounts of Prm1 protein remained at the time when the plasma membranes came into contact. Nevertheless, this stable pool of Prm1 was retained at polarized sites on the plasma membrane and was sufficient to promote plasma membrane fusion. Thus, the amount of Prm1 expressed in mating yeast is far in excess of the amount required to facilitate fusion.


Subject(s)
Cell Membrane/metabolism , Membrane Fusion/physiology , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Amino Acid Sequence , Cell Polarity , Membrane Proteins/genetics , Membrane Proteins/physiology , Molecular Sequence Data , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
J Biol Chem ; 285(4): 2274-83, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-19933274

ABSTRACT

Prm1 is a pheromone-induced membrane glycoprotein that promotes plasma membrane fusion in yeast mating pairs. HA-Prm1 migrates at twice its expected molecular weight on non-reducing SDS-PAGE gels and coprecipitates with Prm1-TAP, indicating that Prm1 is a disulfide-linked homodimer. The N terminus of a plasma membrane-localized GFP-Prm1 endocytic mutant projects into the cytoplasm, where it is protected from low pH quenching in live cells and from external protease in spheroplasts. In a revised topological map, Prm1 has four transmembrane domains and two large extracellular loops. Mutation of all four cysteines in the extracellular loops blocked disulfide bond formation and destabilized the Prm1 homodimer without preventing Prm1 transport to contact sites in mating pairs. Cys(120) in loop 1 and Cys(545) in loop 2 form disulfide cross-links in the Prm1 homodimer and are required for fusion activity. Cys(120) lies between a hydrophobic segment formerly thought to be a transmembrane domain and an amphipathic helix. An interaction between either of these regions and the opposing membrane could promote fusion.


Subject(s)
Disulfides/chemistry , Disulfides/metabolism , Membrane Fusion/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Cell Membrane/enzymology , Cysteine/genetics , Dimerization , Endoplasmic Reticulum/enzymology , Glycosylation , Green Fluorescent Proteins/genetics , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...