Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Membr Biol ; 253(3): 257-270, 2020 06.
Article in English | MEDLINE | ID: mdl-32415382

ABSTRACT

Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.


Subject(s)
Biomarkers, Tumor , Computational Biology , Membrane Proteins/metabolism , Neoplasms/metabolism , Proteome , Proteomics , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Proteomics/methods , Signal Transduction
2.
Cell Commun Signal ; 16(1): 36, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29966518

ABSTRACT

BACKGROUND: Chemotherapeutic efficacy can be improved by targeting the structure and function of the extracellular matrix (ECM) in the carcinomal stroma. This can be accomplished by e.g. inhibiting TGF-ß1 and -ß3 or treating with Imatinib, which results in scarcer collagen fibril structure in xenografted human KAT-4/HT29 (KAT-4) colon adenocarcinoma. METHODS: The potential role of αVß6 integrin-mediated activation of latent TGF-ß was studied in cultured KAT-4 and Capan-2 human ductal pancreatic carcinoma cells as well as in xenograft carcinoma generated by these cells. The monoclonal αVß6 integrin-specific monoclonal antibody 3G9 was used to inhibit the αVß6 integrin activity. RESULTS: Both KAT-4 and Capan-2 cells expressed the αVß6 integrin but only KAT-4 cells could utilize this integrin to activate latent TGF-ß in vitro. Only when Capan-2 cells were co-cultured with human F99 fibroblasts was the integrin activation mechanism triggered, suggesting a more complex, fibroblast-dependent, activation pathway. In nude mice, a 10-day treatment with 3G9 reduced collagen fibril thickness and interstitial fluid pressure in KAT-4 but not in the more desmoplastic Capan-2 tumors that, to achieve a similar effect, required a prolonged 3G9 treatment. In contrast, a 10-day direct inhibition of TGF-ß1 and -ß3 reduced collagen fibril thickness in both tumor models. CONCLUSION: Our data demonstrate that the αVß6-directed activation of latent TGF-ß plays a pivotal role in modulating the stromal collagen network in carcinoma, but that the sensitivity to αVß6 inhibition depends on the simultaneous presence of alternative paths for latent TGF-ß activation and the extent of desmoplasia.


Subject(s)
Antigens, Neoplasm/immunology , Collagen/chemistry , Integrins/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic , Collagen/metabolism , Extracellular Fluid/metabolism , Female , Gene Expression Profiling , Humans , Integrins/metabolism , Mice , Pressure , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...