Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels ; 10: 51, 2017.
Article in English | MEDLINE | ID: mdl-28250818

ABSTRACT

BACKGROUND: Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. RESULTS: The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L-1 for the integrated cases, as compared to 0.581 EUR L-1 for the off-site case. CONCLUSIONS: An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

2.
Biomatter ; 2(2): 94-102, 2012.
Article in English | MEDLINE | ID: mdl-23507807

ABSTRACT

Many of the failures of total joint replacements are related to tribology, i.e., wear of the cup, head and liner. Accumulation of wear particles at the implants can be linked to osteolysis which leads to bone loss and in the end aseptic implant loosening. Therefore it is highly desirable to reduce the generation of wear particles from the implant surfaces. Silicon nitride (Si(3)N(4)) has shown to be biocompatible and have a low wear rate when sliding against itself and is therefore a good candidate as a hip joint material. Furthermore, wear particles of Si(3)N(4) are predicted to slowly dissolve in polar liquids and they therefore have the potential to be resorbed in vivo, potentially reducing the risk for aseptic loosening. In this study, it was shown that α-Si(3)N(4)-powder dissolves in PBS. Adsorption of blood plasma indicated a good acceptance of Si(3)N(4) in the body with relatively low immune response. Si(3)N(4) sliding against Si(3)N(4) showed low wear rates both in bovine serum and PBS compared with the other tested wear couples. Tribofilms were built up on the Si(3)N(4) surfaces both in PBS and in bovine serum, controlling the friction and wear characteristics.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Hip Joint/pathology , Prosthesis Failure , Silicon Compounds/chemistry , Adsorption , Animals , Arthroplasty, Replacement, Hip/methods , Biocompatible Materials/chemistry , Cattle , Humans , Immune System , Materials Testing , Microscopy, Electron, Scanning , Osteolysis , Plasma/drug effects , Risk , Solubility , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...