Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 38: 159-169, 2016 11.
Article in English | MEDLINE | ID: mdl-27421621

ABSTRACT

Our lack of full understanding of transport and sequestration of the heterologous products currently limit metabolic engineering in plants for the production of high value terpenes. For instance, although all genes of the artemisinin/arteannuin B (AN/AB) biosynthesis pathway (AN-PW) from Artemisia annua have been identified, ectopic expression of these genes in Nicotiana benthamiana yielded mostly glycosylated pathway intermediates and only very little free (dihydro)artemisinic acid [(DH)AA]. Here we demonstrate that Lipid Transfer Protein 3 (AaLTP3) and the transporter Pleiotropic Drug Resistance 2 (AaPDR2) from A. annua enhance accumulation of (DH)AA in the apoplast of N. benthamiana leaves. Analysis of apoplast and cell content and apoplast exclusion assays show that AaLTP3 and AaPDR2 prevent reflux of (DH)AA from the apoplast back into the cells and enhances overall flux through the pathway. Moreover, AaLTP3 is stabilized in the presence of AN-PW activity and co-expression of AN-PW+AaLTP3+AaPDR2 genes yielded AN and AB in necrotic N. benthamiana leaves at 13 days post-agroinfiltration. This newly discovered function of LTPs opens up new possibilities for the engineering of biosynthesis pathways of high value terpenes in heterologous expression systems.


Subject(s)
Artemisia annua/physiology , Artemisinins/metabolism , Biosynthetic Pathways/physiology , Carrier Proteins/metabolism , Metabolic Engineering/methods , Nicotiana/physiology , Plant Proteins/metabolism , Artemisinins/isolation & purification , Carrier Proteins/genetics , Genetic Enhancement/methods , Metabolic Networks and Pathways/physiology , Plant Proteins/genetics
2.
Plant Sci ; 183: 9-13, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22195571

ABSTRACT

The aim of this project was to evaluate the effect of fixation on plant material prior to Laser Microdissection and Pressure Catapulting (LMPC) and to identify an appropriate method for preserving good RNA quality after cell isolation. Therefore, flower buds from Artemisia annua L. were exposed to either the fixative formaldehyde or a non-fixative buffer prior to cell isolation by LMPC. Proteinase K was used after cell isolation from fixed plant tissue, in an attempt to improve the RNA yield. The ability to detect gene expression using real-time quantitative PCR with or without previous amplification of RNA from cells isolated by LMPC was also evaluated. Conclusively, we describe a new technique, without fixation, enabling complete isolation of intact glandular secretory trichomes and specific single trichome cells of A. annua. This method is based on LMPC and preserves good RNA quality for subsequent RNA expression studies of both whole trichomes, apical and sub-apical cells from trichomes of A. annua. Using this method, expression of genes of terpene metabolism was studied by real-time quantitative PCR. Expression of genes involved in artemisinin biosynthesis was observed in both apical and sub-apical cells.


Subject(s)
Artemisia annua/genetics , Gene Expression , Laser Capture Microdissection/methods , Plant Proteins/genetics , Terpenes/metabolism , Tissue Fixation , Artemisia annua/cytology , Artemisia annua/metabolism , Artemisinins/metabolism , Fixatives , Formaldehyde , Gene Expression Profiling , Plant Components, Aerial/cytology , Plant Components, Aerial/genetics , Plant Components, Aerial/metabolism , Plant Proteins/metabolism , RNA, Plant , Real-Time Polymerase Chain Reaction
3.
BMC Plant Biol ; 11: 45, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21388533

ABSTRACT

BACKGROUND: Recently, Artemisia annua L. (annual or sweet wormwood) has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. RESULTS: The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13) reductase and aldehyde dehydrogenase 1) showed remarkably higher expression (between ~40- to ~500-fold) in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures). Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. CONCLUSIONS: Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes). The expression of dihydroartemisinic aldehyde reductase has been suggested to have a negative effect on artemisinin production through reduction of dihydroartemisinic aldehyde to dihydroartemisinic alcohol. However, our results show that this enzyme is expressed only at low levels in tissues producing artemisinin and consequently its effect on artemisinin production may be limited. Finally, squalene synthase but not other sesquiterpene synthases appears to be a significant competitor for farnesyl diphosphate in artemisinin-producing tissues.


Subject(s)
Artemisia annua/genetics , Artemisinins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Aldehyde Dehydrogenase 1 Family , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Artemisia annua/enzymology , Gene Expression Profiling , Gene Expression Regulation, Plant , Isoenzymes/genetics , Isoenzymes/metabolism , Oxidoreductases/genetics , Plant Proteins/genetics , RNA, Plant/genetics , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
4.
Phytochemistry ; 70(9): 1123-1128, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19664791

ABSTRACT

A method based on the laser microdissection pressure catapulting technique has been developed for isolation of whole intact cells. Using a modified tissue preparation method, one outer pair of apical cells and two pairs of sub-apical, chloroplast-containing cells, were isolated from glandular secretory trichomes of Artemisia annua. A. annua is the source of the widely used antimalarial drug artemisinin. The biosynthesis of artemisinin has been proposed to be located to the glandular trichomes. The first committed steps in the conversion of FPP to artemisinin are conducted by amorpha-4,11-diene synthase, amorpha-4,11-diene hydroxylase, a cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde Delta11(13) reductase. The expression of the three biosynthetic enzymes in the different cell types has been studied. In addition, the expression of farnesyldiphosphate synthase producing the precursor of artemisinin has been investigated. Our experiments showed expression of farnesyldiphosphate synthase in apical and sub-apical cells as well as in mesophyl cells while the three enzymes involved in artemisinin biosynthesis were expressed only in the apical cells. Elongation factor 1alpha was used as control and it was expressed in all cell types. We conclude that artemisinin biosynthesis is taking place in the two outer apical cells while the two pairs of chloroplast-containing cells have other functions in the overall metabolism of glandular trichomes.


Subject(s)
Artemisia annua/metabolism , Artemisinins/metabolism , Alkyl and Aryl Transferases/metabolism , Artemisia annua/cytology , Artemisia annua/enzymology , Base Sequence , Chloroplasts/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gas Chromatography-Mass Spectrometry , Oxidoreductases/metabolism , Plant Leaves/enzymology , Plant Leaves/metabolism , Plant Proteins/metabolism
5.
Nano Lett ; 8(11): 3989-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18928323

ABSTRACT

Gold surfaces and structures modified with octanedithiol were reacted with dithiothreitol prior to immersion in buffered solutions of charge stabilized gold nanoparticles. The procedure gives a dithiol layer with adequate properties for a homogeneous octanedithiol monolayer and uniform and reproducible gold nanoparticle binding. The distance between the adsorbing particles is controlled by the particle electrostatic interactions and can be carefully tuned by variation of ionic strength. To some extent, long-range ordering occurs among the adsorbed particles. This behavior is facilitated by the particles' small size compared to the Debye screening but also by the homogeneity of the surface modification. The simple character of the system makes it attractive for fabrication of controlled nanoparticle arrays where further chemical and biological modifications are required.


Subject(s)
Dithiothreitol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning
6.
Arch Biochem Biophys ; 436(2): 215-26, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15797234

ABSTRACT

A cDNA clone encoding amorpha-4,11-diene synthase from Artemisia annua was subcloned into a bacterial expression vector in frame with a His6-tag. Recombinant amorpha-4,11-diene synthase was produced in Escherichia coli and purified to apparent homogeneity. The enzyme showed pH optimum at pH 6.5, and a minimum at pH 7.5. Substantial activity was observed in the presence of Mg2+, Mn2+ or Co2+ as cofactor. The enzyme exhibits a low activity in the presence of Ni2+ and essentially no activity with Cu2+ or Zn2+. The sesquiterpenoids produced from farnesyl diphosphate in the presence of Mg2+ were analyzed by GC-MS. In addition to amorpha-4,11-diene, 15 sesquiterpenoids were produced. Only small quantitative differences in product pattern were observed at pH 6.5, 7.5, or 9.5. Amorpha-4,11-diene synthase showed significant increased product selectivity in the presence of Mn2+ or Co2+. Km for farnesyl diphosphate was 3.3, 8.0, and 0.7 microM in the presence of Mg2+, Mn2+ or Co2+, respectively. The corresponding kcat-values were 6.8, 15.0, and 1.3 x 10(-3) s(-1), respectively. Km and kcat for geranyl diphosphate were 16.9 microM and 7.0 x 10(-4) s(-1), respectively, at pH 6.5, in the presence of Mn2+.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/isolation & purification , Artemisia annua/enzymology , Recombinant Proteins/chemistry , Blotting, Western , Cations , Chromatography, Gas , Cloning, Molecular , Cobalt/chemistry , Copper/chemistry , Crystallography, X-Ray , DNA Primers/chemistry , DNA, Complementary/metabolism , Electrophoresis , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Gas Chromatography-Mass Spectrometry , Histidine/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Magnesium/chemistry , Manganese/chemistry , Models, Chemical , Mutagenesis, Site-Directed , Oxygen/chemistry , Phosphates/chemistry , Plasmids/metabolism , Polymerase Chain Reaction , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA , Substrate Specificity , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...