Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 7: 236, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24886399

ABSTRACT

BACKGROUND: PermaNet® 3.0 is an insecticide synergist-combination long-lasting insecticidal net designed to have increased efficacy against malaria vectors with metabolic resistance, even when combined with kdr. The current study reports on the impact of this improved tool on entomological indices in an area with pyrethroid-resistant malaria vectors in Nigeria. METHODS: Baseline entomological indices across eight villages in Remo North LGA of Ogun State provided the basis for selection of three villages (Ilara, Irolu and Ijesa) for comparing the efficacy of PermaNet® 3.0 (PN3.0), PermaNet® 2.0 (PN2.0) and untreated polyester nets as a control (UTC). In each case, nets were distributed to cover all sleeping spaces and were evaluated for insecticidal activity on a 3-monthly basis. Collection of mosquitoes was conducted monthly via window traps and indoor resting catches. The arithmetic means of mosquito catches per house, entomological inoculation rates before and during the intervention were compared as well as three other outcome parameters: the mean mosquito blood feeding rate, mean mortality and mean parity rates. RESULTS: Anopheles gambiae s.l. was the main malaria vector in the three villages, accounting for >98% of the Anopheles population and found in appreciable numbers for 6-7 months. Deltamethrin, permethrin and lambdacyhalothrin resistance were confirmed at Ilara, Irolu and Ijesa. The kdr mutation was the sole resistance mechanism at Ilara, whereas kdr plus P450-based metabolic mechanisms were detected at Irolu and Ijesa. Bioassays repeated on domestically used PN 2.0 and PN 3.0 showed persistent optimal (100%) bio-efficacy for both net types after the 3rd, 6th, 9th and 12th month following net distribution. The use of PN 3.0 significantly reduced mosquito densities with a 'mass killing' effect inside houses. Households with PN 3.0 also showed reduced blood feeding as well as lower mosquito parity and sporozoite rates compared to the PN 2.0 and the UTC villages. A significant reduction in the entomological inoculation rate was detected in both the PN 2.0 village (75%) and PN 3.0 village (97%) post LLIN-distribution and not in the UTC village. CONCLUSION: The study confirms the efficacy of PN 3.0 in reducing malaria transmission compared to pyrethroid-only LLINs in the presence of malaria vectors with P450-based metabolic- resistance mechanisms.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/pharmacology , Malaria/prevention & control , Pyrethrins/pharmacology , Animals , Data Collection , Family Characteristics , Feeding Behavior , Gene Expression Regulation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/drug effects , Malaria/epidemiology , Mutation , Nigeria/epidemiology , Population Density , Surveys and Questionnaires , Time Factors
2.
Parasitol Res ; 112(10): 3433-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23842885

ABSTRACT

Mosquito samples were collected from rural and urban communities in three selected major towns in Southwestern Nigeria to determine the impact of urbanization on the diversity and abundance of Anopheles species associated with malaria transmission in human habitations. A total of ten Anopheles species were identified in the rural communities, while eight Anopheles species were identified in the urban communities. Out of the ten Anopheles species identified, only four species, Anopheles gambiae (Giles), Anopheles funestus (Giles), Anopheles moucheti (Evans), and Anopheles nili (Theobald), were established to be vectors of malaria occurring in greater than 50% of the rural communities. Only A. gambiae occurred in all the urban communities, while the other three major vectors occurred in not more than 20% of the urban communities. Margalef's and Shannon-Wiener indices showed that diversity and species richness were higher in the rural compared to the urban. Comprehensive information on malaria vector abundance and diversity in rapidly changing communities is an important tool in planning and implementing successful vector control programs.


Subject(s)
Anopheles/genetics , Anopheles/physiology , Malaria/transmission , Rural Population , Urban Population , Animals , Humans , Insect Vectors , Nigeria , Species Specificity
3.
Parasit Vectors ; 5: 116, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22686575

ABSTRACT

BACKGROUND: Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. METHODS: Two - three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. RESULTS: Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. CONCLUSION: Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of insecticide resistance management strategies to combat the multiple resistance identified.


Subject(s)
Anopheles/drug effects , Carbamates/pharmacology , DDT/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Animals , Anopheles/genetics , DNA/genetics , Female , Insect Proteins/metabolism , Nigeria/epidemiology , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...