Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol Report ; 41(2): 209-217, 2023.
Article in English | MEDLINE | ID: mdl-37159650

ABSTRACT

The use of molecular markers allows for precise estimates of genetic diversity, which is an important parameter that enables breeders to select parental lines and designing breeding systems. We assessed the level of genetic diversity and population structure in a panel of 151 tropical maize inbred lines using 10,940 SNP (single nucleotide polymorphism) markers generated through the DArTseq genotyping platform. The average gene diversity was 0.39 with expected heterozygosity ranging from 0.00 to 0.84, and a mean of 0.02. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual inbred lines within the populations while only 3% was distributed among the populations. Both neighbor-joining clustering and STRUCTURE analysis classified the inbred lines into four major groups. The crosses that involve inbred lines from most divergent subgroups are expected to generate maximum heterosis and produce wide variation. The results will be beneficial for breeders to better understand and exploit the genetic diversity available in the set of maize inbred lines we studied. Supplementary Information: The online version contains supplementary material available at 10.1007/s11105-022-01358-2.

2.
Theor Appl Genet ; 134(7): 1945-1955, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33813604

ABSTRACT

KEY MESSAGE: Utilizing a high-density integrated genetic linkage map of hexaploid sweetpotato, we discovered a major dominant QTL for root-knot nematode (RKN) resistance and modeled its effects. This discovery is useful for development of a modern sweetpotato breeding program that utilizes marker-assisted selection and genomic selection approaches for faster genetic gain of RKN resistance. The root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) causes significant storage root quality reduction and yields losses in cultivated sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, resistance to RKN was examined in a mapping population consisting of 244 progenies derived from a cross (TB) between 'Tanzania,' a predominant African landrace cultivar with resistance to RKN, and 'Beauregard,' an RKN susceptible major cultivar in the USA. We performed quantitative trait loci (QTL) analysis using a random-effect QTL mapping model on the TB genetic map. An RKN bioassay incorporating potted cuttings of each genotype was conducted in the greenhouse and replicated five times over a period of 10 weeks. For each replication, each genotype was inoculated with ca. 20,000 RKN eggs, and root-knot galls were counted ~62 days after inoculation. Resistance to RKN in the progeny was highly skewed toward the resistant parent, exhibiting medium to high levels of resistance. We identified one major QTL on linkage group 7, dominant in nature, which explained 58.3% of the phenotypic variation in RKN counts. This work represents a significant step forward in our understanding of the genetic architecture of RKN resistance and sets the stage for future utilization of genomics-assisted breeding in sweetpotato breeding programs.


Subject(s)
Disease Resistance/genetics , Ipomoea batatas/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Tylenchoidea/pathogenicity , Animals , Chromosome Mapping , Genetic Linkage , Genotype , Ipomoea batatas/parasitology , Plant Diseases/parasitology , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...