Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 9(7)2023 07.
Article in English | MEDLINE | ID: mdl-37489884

ABSTRACT

African swine fever (ASF) is a contagious viral disease that affects domestic pigs and wild boars, causing significant economic losses globally. After the first Nigerian outbreak in 1997, there have been frequent reports of ASF in pig-producing regions in the country. To facilitate control, it is important to understand the genotype and phylogenetic relationship of ASF viruses (ASFVs). Recent genetic analysis of Nigerian ASFV isolates has revealed the presence of both genotypes I and II; this is based on analysis of a few selected genes. Phylogenetic analysis of ASFV whole genomes highlights virus origins and evolution in greater depth. However, there is currently no information on the ASFV genome from Nigerian isolates. Two ASFV-positive samples were detected during a random survey of 150 Nigerian indigenous pig samples collected in 2016. We assembled near-complete genomes of the two ASFV-positive samples using in-solution hybrid capture sequencing. The genome-wide phylogenetic tree assigned these two genomes into p72 genotype I, particularly close to the virulent Benin 97/1 strain. The two ASFVs share 99.94 and 99.92 % genomic sequence identity to Benin97/1. This provides insight into the origin and relationship of ASFV strains from Nigeria and Italy. The study reports for the first time the determination of near-complete genomes of ASFV using in-solution hybrid capture sequencing, which represents an important advance in understanding the global evolutionary landscape of ASFVs.


Subject(s)
African Swine Fever , Swine , Animals , Phylogeny , Genotype , Genomics , Disease Outbreaks , Sus scrofa
2.
Genet Sel Evol ; 49(1): 52, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28651519

ABSTRACT

BACKGROUND: The history of pig populations in Africa remains controversial due to insufficient evidence from archaeological and genetic data. Previously, a Western ancestry for West African pigs was reported based on loci that are involved in the determination of coat color. We investigated the genetic diversity of Nigerian indigenous pigs (NIP) by simultaneously analyzing variation in mitochondrial DNA (mtDNA), Y-chromosome sequence and the melanocortin receptor 1 (MC1R) gene. RESULTS: Median-joining network analysis of mtDNA D-loop sequences from 201 NIP and previously characterized loci clustered NIP with populations from the West (Europe/North Africa) and East/Southeast Asia. Analysis of partial sequences of the Y-chromosome in 57 Nigerian boars clustered NIP into lineage HY1. Finally, analysis of MC1R in 90 NIP resulted in seven haplotypes, among which the European wild boar haplotype was carried by one individual and the European dominant black by most of the other individuals (93%). The five remaining unique haplotypes differed by a single synonymous substitution from European wild type, European dominant black and Asian dominant black haplotypes. CONCLUSIONS: Our results demonstrate a European and East/Southeast Asian ancestry for NIP. Analyses of MC1R provide further evidence. Additional genetic analyses and archaeological studies may provide further insights into the history of African pig breeds. Our findings provide a valuable resource for future studies on whole-genome analyses of African pigs.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Phylogeny , Receptor, Melanocortin, Type 1/genetics , Swine/classification , Swine/genetics , Y Chromosome/genetics , Animals , Genome/genetics , Haplotypes , Nigeria
SELECTION OF CITATIONS
SEARCH DETAIL
...