Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 305(12): 3371-3384, 2022 12.
Article in English | MEDLINE | ID: mdl-35112485

ABSTRACT

The evolution of the vertebrate ear is a complicated story of convergence, co-option, loss of function, and occasional regaining of said function. An incredible variety of structures has been adopted as sound receptors, but only chameleons are known to have a bony airborne sound receiver. In some chameleons, the pterygoid bone captures sound vibrations and relays them to the inner ear via a connection to the extracolumella. The distribution of this unique hearing system has not been examined across Chamaeleonidae. Here, I report on dissections on 12 species across four genera and describe their middle ear anatomy for the first time. Half of these species were found to have a link between their extracolumella and pterygoid, and ancestral state reconstruction supports four independent acquisitions of this novel sound-conduction pathway. Species with this pathway tend to have a gular pouch, which seems to produce biotremors and possibly airborne sound, suggesting that this hearing system plays some role in intraspecific communication. Three species were also µ-CT scanned using enhanced contrast to investigate differences in the musculature surrounding the middle ear cavity. In species with a middle ear connected to the pterygoid, the muscles directly lateral to the pterygoid insert farther anterior onto the mandible, which may serve to minimize dampening of vibrations on the pterygoid. Together, these data suggest that the ear plays a more significant role in the lives of some chameleons than has been recognized, and that parallelism is common in the evolution of the ear.


Subject(s)
Ear, Inner , Ear, Middle , Ear, Middle/anatomy & histology , Sound , Hearing/physiology , Vibration
2.
Sci Rep ; 11(1): 16875, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413357

ABSTRACT

Several amniote lineages independently evolved multiple rows of marginal teeth in response to the challenge of processing high fiber plant matter. Multiple tooth rows develop via alterations to tooth replacement in captorhinid reptiles and ornithischian dinosaurs, but the specific changes that produce this morphology differ, reflecting differences in their modes of tooth attachment. To further understand the mechanisms by which multiple tooth rows can develop, we examined this feature in Endothiodon bathystoma, a member of the only synapsid clade (Anomodontia) to evolve a multi-rowed marginal dentition. We histologically sampled Endothiodon mandibles with and without multiple tooth rows as well as single-rowed maxillae. We also segmented functional and replacement teeth in µ-CT scanned mandibles and maxillae of Endothiodon and several other anomodonts with 'postcanine' teeth to characterize tooth replacement in the clade. All anomodonts in our sample displayed a space around the tooth roots for a soft tissue attachment between tooth and jaw in life. Trails of alveolar bone indicate varying degrees of labial migration of teeth through ontogeny, often altering the spatial relationships of functional and replacement teeth in the upper and lower jaws. We present a model of multiple tooth row development in E. bathystoma in which labial migration of functional teeth was extensive enough to prevent resorption and replacement by newer generations of teeth. This model represents another mechanism by which multiple tooth rows evolved in amniotes. The multiple tooth rows of E. bathystoma may have provided more extensive contact between the teeth and a triturating surface on the palatine during chewing.


Subject(s)
Biological Evolution , Dentition , Dinosaurs/anatomy & histology , Tooth/diagnostic imaging , Tooth/growth & development , X-Ray Microtomography , Animals , Phylogeny , Tooth Erosion/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...