Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0116624, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934618

ABSTRACT

Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.

2.
Nat Commun ; 13(1): 5595, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151093

ABSTRACT

Tamoxifen is a selective estrogen receptor (ER) modulator that is used to treat ER-positive breast cancer, but that at high doses kills both ER-positive and ER-negative breast cancer cells. We recapitulate this off-target effect in Caenorhabditis elegans, which does not have an ER ortholog. We find that different bacteria dramatically modulate tamoxifen toxicity in C. elegans, with a three-order of magnitude difference between animals fed Escherichia coli, Comamonas aquatica, and Bacillus subtilis. Remarkably, host fatty acid (FA) biosynthesis mitigates tamoxifen toxicity, and different bacteria provide the animal with different FAs, resulting in distinct FA profiles. Surprisingly these bacteria modulate tamoxifen toxicity by different death mechanisms, some of which are modulated by FA supplementation and others by antioxidants. Together, this work reveals a complex interplay between microbiota, FA metabolism and tamoxifen toxicity that may provide a blueprint for similar studies in more complex mammals.


Subject(s)
Receptors, Estrogen , Tamoxifen , Animals , Bacteria/metabolism , Caenorhabditis elegans/metabolism , Diet , Fatty Acids/metabolism , Mammals/metabolism , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
3.
PLoS Genet ; 10(12): e1004829, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474470

ABSTRACT

In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial ß-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid stores and to sustain de novo fat synthesis during adulthood. Following germline ablation, NHR-49 is up-regulated in somatic cells by the conserved longevity determinants DAF-16/FOXO and TCER-1/TCERG1. Accordingly, NHR-49 overexpression in fertile animals extends their lifespan modestly. In fertile adults, nhr-49 expression is DAF-16/FOXO and TCER-1/TCERG1 independent although its depletion causes age-related lipid abnormalities. Our data provide molecular insights into how reproductive stimuli are integrated into global metabolic changes to alter the lifespan of the animal. They suggest that NHR-49 may facilitate the adaptation to loss of reproductive potential through synchronized enhancement of fatty-acid oxidation and desaturation, thus breaking down some fats ordained for reproduction and orchestrating a lipid profile conducive for somatic maintenance and longevity.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans , Fatty Acids/metabolism , Germ Cells/metabolism , Lipid Metabolism/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Forkhead Transcription Factors/metabolism , Longevity/genetics , Oxidation-Reduction , Peptide Elongation Factors/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reproduction/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...