Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 11: 103, 2013 Nov 09.
Article in English | MEDLINE | ID: mdl-24209779

ABSTRACT

BACKGROUND: Adipose tissue is an active endocrine organ which secretes a wide range of hormones and protein factors, collectively termed adipokines. Adipokines affect appetite and satiety, glucose and lipid metabolism, inflammation and immune functions. The objectives were to evaluate serum concentrations of adipokines (adiponectin, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6) in lactating dairy cows with postpartum uterine inflammatory conditions (metritis, clinical endometritis or subclinical endometritis) and in cows experiencing loss of body condition, and to assess the relationship of adipokines and body condition loss in the establishment of persistent uterine inflammatory conditions. METHODS: Lactating multiparous Holstein cows (N = 40), with body condition scores (BCS) from 2 to 4 (eight cows for each 0.5 score increment) were enrolled. Body condition was monitored for all cows weekly for 7 weeks post calving; cows with uterine inflammatory conditions were also re-evaluated 2 weeks later. Blood samples were collected from 1 week prior to calving to 7 weeks after calving for determination of serum concentrations of adipokines, insulin and insulin like growth factor (IGF)-1. RESULTS: Cows with metritis or clinical endometritis had higher serum concentrations of adiponectin, leptin, TNF-alpha, IL-1beta and IL-6 compared to normal cows (P < 0.05). Furthermore, serum leptin, TNF-alpha, IL-1beta and IL-6 were higher in cows with subclinical endometritis compared to normal cows (P < 0.05), and insulin and IGF-1 concentrations were lower in cows with metritis or clinical endometritis. Cows with low BCS (2 and 2.5) had significantly higher adiponectin, TNF-alpha, IL-1beta and IL-6 than those with high BCS (3 to 4). Cows with persistent uterine inflammatory conditions had higher adiponectin, leptin TNF-alpha, IL-1beta and IL-6 and insulin compared to normal and spontaneously recovered cows, except for IGF-1 (P < 0.05). CONCLUSIONS: Serum concentrations of adipokines, insulin, and IGF-1 had significant associations with BCS categories (low vs. high) and postpartum uterine inflammatory conditions. Perhaps loss of body condition mediated increases in anti- and pro-inflammatory cytokines, whereas increased pro- and anti-inflammatory cytokines concentrations mediated body condition loss and thereby prolonged persistence of uterine inflammation in dairy cows.


Subject(s)
Adipokines/blood , Cattle Diseases/blood , Cytokines/blood , Postpartum Period/blood , Uterine Diseases/veterinary , Animals , Body Constitution , Cattle , Female , Insulin/blood , Insulin-Like Growth Factor I/metabolism , Uterine Diseases/blood
2.
Reprod Biol Endocrinol ; 8: 89, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20642864

ABSTRACT

BACKGROUND: The physiological mechanism by which bulls stimulate resumption of ovarian cycling activity in postpartum, anovular, suckled cows after calving may involve the concurrent activation of the hypothalamic-hypophyseal-ovarian (HPO) axis and hypothalamic-hypophyseal-adrenal (HPA) axis. Thus, the objectives of this experiment were to determine if characteristics of temporal patterns of cortisol and luteinizing hormone (LH) in postpartum, anovular, beef cows are influenced by acute exposure to bulls. The null hypotheses were that daily, temporal characteristics of cortisol and LH concentration patterns do not differ between cows exposed acutely to bulls or steers. METHODS: Sixteen cows were assigned randomly 67 +/- 4 (+/- SE) after calving to be exposed to bulls (EB, n = 8) or steers (ES, n = 8) 5 h daily for 9 d (D 0 to 8). Blood samples were collected daily from each cow via jugular catheters at 15-min intervals for 6 h from 1000 to 1600 h each day. The 5-h exposure period began 1 h after the start of the intensive bleeding period. Characteristics of cortisol and LH concentration patterns (mean, baseline, pulse frequency, pulse amplitude, and pulse duration) were identified by PULSAR analyses. RESULTS: Mean cortisol concentrations decreased (P < 0.05) in cows in both treatments from D 0 to D 2. Thereafter, mean cortisol concentrations stabilized and did not differ (P > 0.10) between EB and ES cows. The decrease in mean cortisol concentrations in EB and ES cows from D 0 to D 2 was attributed to cows acclimatizing to intensive blood sampling and handling procedures. Consequently, analyses for characteristics of cortisol and LH concentration patterns included D 2 through 8 only. Cortisol mean and baseline concentrations, and pulse amplitude did not differ (P > 0.10) between EB and ES cows. However, cortisol pulse duration tended to be longer (P = 0.09) and pulse frequency was lower (P = 0.05) in EB than ES cows. LH pulse frequency was greater (P = 0.06) in EB than ES cows. All other characteristics of LH concentration patterns did not differ (P > 0.10) between EB and ES cows. Characteristics of cortisol concentration patterns were not related to characteristics of LH concentration patterns for ES cows (P > 0.10). However, as cortisol pulse amplitude increased, LH pulse amplitude decreased (b1 = -0.04; P < 0.05) for EB cows. CONCLUSIONS: In conclusion, exposing primiparous, postpartum, anovular, suckled cows to bulls for 5-h daily over a 9-d period did not alter mean concentrations of cortisol or LH compared to mean concentrations of cortisol and LH in cows exposed to steers. However, exposing cows to bull in this manner altered characteristics of temporal patterns of both LH and cortisol by increasing LH pulse frequency and decreasing cortisol pulse frequency. Interestingly, in cows exposed to bulls, as amplitude and frequency of cortisol pulses decreased, amplitudes of LH pulses increased and frequency of LH pulses tended to increase. Thus, the physiological mechanism of the biostimulatory effect of bulls may initially involve modification of the HPA axis and these changes may facilitate activation of the HPO axis and resumption of ovulatory cycles in postpartum, anovular, suckled cows.


Subject(s)
Anovulation/blood , Hydrocortisone/blood , Luteinizing Hormone/blood , Parity , Postpartum Period/blood , Algorithms , Animal Husbandry , Animals , Anovulation/physiopathology , Cattle , Female , Male , Parity/physiology , Postpartum Period/physiology , Pregnancy , Sexual Behavior, Animal/physiology , Time Factors
3.
Reprod Biol Endocrinol ; 5: 33, 2007 Aug 13.
Article in English | MEDLINE | ID: mdl-17697329

ABSTRACT

BACKGROUND: The objective was to evaluate if cortisol concentrations are associated with the resumption of luteal activity in postpartum, primiparous cows exposed to bulls. The hypotheses were that 1) interval from start of exposure to resumption of luteal activity; 2) proportions of cows that resumed luteal function during the exposure period; and 3) cortisol concentrations do not differ among cows exposed or not exposed to bulls (Exp. 1), and cows continuously exposed to bull or steer urine (Exp. 2). METHODS: In Exp. 1, 28 anovular cows were exposed (BE; n = 13) or not exposed (NE; n = 15) to bulls for 30 d at 58 d after calving. In Exp. 2, 38 anovular cows were fitted with a controlled urine delivery device at 45 d after calving and exposed continuously (24 h/d) to bull (BUE; n = 19) or steer (SUE; n = 19) urine. Length of exposure was ~64 d. Blood samples were collected from each cow on D 0 and every 3 d throughout exposure periods in both experiments and assayed for progesterone. Cortisol was assayed in samples collected on D 0, 8, 16, and 24 in Exp. 1; and, D 0, 19, 38, and 57 in Exp. 2. RESULTS: In Exp. 1, interval from the start of exposure to resumption of luteal activity was shorter (P < 0.05) for BE cows than NE cows, similarly, more (P < 0.05) BE cows than NE cows resumed luteal function during the exposure period. In Exp. 2, there was no difference in intervals from the start of exposure to resumption of luteal activity and proportions of cows that resumed luteal function during the exposure period between BUE and SUE cows. In Exp. 1, there was no difference in cortisol concentrations between BE and NE cows at the start of the experiment (D 0), however, cortisol concentrations were greater (P < 0.05) in BE cows than NE cows on D 9, 18, and 27. In Exp. 2, cortisol concentrations were higher for BUE than SUE cows on D 0 (P < 0.05), thereafter cortisol decreased (P < 0.05) but did not differ between BUE and SUE cows. CONCLUSION: We conclude that the physical presence of bulls stimulates resumption of luteal activity and is coincident with increased cortisol concentrations, and hypothesize a possible association between adrenal activation and the biostimulatory effect of bulls.


Subject(s)
Adrenal Glands/metabolism , Sexual Behavior, Animal/physiology , Animals , Cattle , Estrus Synchronization/methods , Female , Hydrocortisone/blood , Luteal Phase/blood , Male , Postpartum Period/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...