Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 469: 153121, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35143910

ABSTRACT

The circadian rhythm has profound effect on the body, exerting effects on diverse events like sleep-wake patterns, eating behavior and hepatic detoxification. The cytochrome p450 s (Cyps) is the main group of enzymes responsible for detoxification. However, the underlying mechanisms behind circadian regulation of the Cyps are currently not fully clarified. Therefore, the aim of the present study was to investigate the requirement of hepatic peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) for the circadian regulation of the hepatic expression of Cyp1-4 using liver-specific PGC-1α knockout (LKO) mice and littermate controls. The circadian regulator genes Bmal1 and Clock displayed decreased mRNA content at zeitgeber time (ZT) 12, compared to ZT-2 and the mRNA content of Cyp2a4 and Cyp2e1 was higher at ZT-12 than at ZT-2. Moreover, the increase in Cyp2e1 mRNA content was not observed in the PGC-1α LKO mice and hepatic PGC-1α deficiency tended to blunt the rhythmic expression of Clock and Bmal1. However, no circadian regulation was evident at the protein level for the investigated Cyps except for a change in Cyp2e1 protein content in the LKO mice. Of the measured transcription factors, only, the mRNA content of peroxisome proliferator-activated receptor α, showed rhythmic expression. To further analyze the difference between the control and LKO mice, principal component analysis were executed on the mRNA data. This demonstrated a clear separation of the experimental groups with respect to ZT and genotype. Our finding provides novel insight into the role of hepatic PGC-1α for basic and circadian expression of Cyps in mouse liver. This is important for our understanding of the molecular events behind circadian Cyp regulation and hence circadian regulation of hepatic detoxification capacity.


Subject(s)
ARNTL Transcription Factors , Cytochrome P-450 CYP2E1 , ARNTL Transcription Factors/metabolism , Animals , Cytochrome P-450 CYP2E1/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
FASEB J ; 34(6): 8653-8670, 2020 06.
Article in English | MEDLINE | ID: mdl-32372536

ABSTRACT

The aim of the study was to investigate the impact of autophagy inhibition on skeletal muscle mitochondrial function and glucose homeostasis in young and aged mice. The transcriptional co-activator PGC-1α regulates muscle oxidative phenotype which has been shown to be linked with basal autophagic capacity. Therefore, young and aged inducible muscle-specific PGC-1α knockout (iMKO) mice and littermate lox/lox controls were used in three separate experiments performed after either saline or colchicine injections on two consecutive days: (1) Euthanization in the basal state obtaining skeletal muscle for mitochondrial respirometry, (2) whole body glucose tolerance test, and (3) in vivo insulin-stimulated 2-deoxyglucose (2-DG) uptake into skeletal muscle. Muscle PGC-1α was not required for maintaining basal autophagy flux, regardless of age. Colchicine-induced inhibition of autophagy was associated with impairments of skeletal muscle mitochondrial function, including reduced ADP sensitivity and altered mitochondrial redox balance in both young and aged mice. Colchicine treatment reduced the glucose tolerance in aged, but not young mice, and similarly in iMKO and lox/lox mice. Colchicine reduced insulin-stimulated 2-DG uptake in soleus muscle in aged mice, independently of PGC-1α, and without affecting insulin-regulated phosphorylation of proximal or distal mediators of insulin signaling. In conclusion, the results indicate that autophagy regulates the mitochondrial ADP sensitivity and redox balance as well as whole body glucose tolerance and skeletal muscle insulin sensitivity in aged mice, with no additional effects of inducible PGC-1α deletion.


Subject(s)
Colchicine/pharmacology , Insulin Resistance/physiology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Age Factors , Animals , Autophagy/drug effects , Deoxyglucose/metabolism , Energy Metabolism/drug effects , Female , Glucose Tolerance Test/methods , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/drug effects
3.
Biochem Pharmacol ; 172: 113736, 2020 02.
Article in English | MEDLINE | ID: mdl-31786263

ABSTRACT

Fasting has been shown to regulate the expression of the cytochrome p450 (CYP) enzyme system in the liver. However, the exact mechanism behind the fasting-induced regulation of the CYP's remains unknown. In the present study we tested the hypothesis that the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), which is a key-regulator of energy metabolism, is responsible for the fasting-induced regulation of the CYP's. Lox/lox and liver specific PGC-1α (LKO) mice of both sexes, fasted for 18 h and the content of the CYP's as well as the hepatic metabolome was assessed. Fasting increased the mRNA content of Cyp2a4, Cyp2e1, Cyp3a11 and Cyp4a10. The fasting-induced response in Cyp4a10 mRNA content was different between lox/lox and LKO mice, while the absence of PGC-1α had no effect on the fasting-induced response for the other Cyp's. Moreover, the fasting-induced response in mRNA content of Sirtinus 1 and Perilipin 2 was different between lox/lox and LKO mice. Only the CYP1A isoform showed a fasting-induced response at the protein level. Absence of hepatic PGC-1α had no effect on the apparent metabolome, where fasting vs fed was the only discriminate in the following multivariate analysis. In conclusion, hepatic PGC-1α is not essential for the fasting-induced regulation of hepatic CYP's.


Subject(s)
Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 3/metabolism , Cytochrome P450 Family 4/metabolism , Food Deprivation , Liver/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 3/genetics , Cytochrome P450 Family 4/genetics , Gene Expression Regulation/physiology , Mice , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...