Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1796: 148093, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36116486

ABSTRACT

OBJECTIVE: Hypoxic ischemic encephalopathy (HIE) secondary to perinatal asphyxia leads to long-term visual disabilities. Dilated retinal exams in human newborns with HIE is an emerging diagnostic tool, but phenotypes of hypoxia ischemia (HI) related retinal vascular injury are unclear. 7,8-Dihydroxyflavone (7,8-DHF) is a TrkB agonist with protective effects on HI-related brain damage. We studied retinal vessels in a mouse model of neonatal HIE and the efficacy of 7,8-DHF in ameliorating HI-related retinal vascular injury. METHODS: C57BL6/J mice at post-natal day (P) 9 received unilateral left carotid artery ligation followed by exposure to 10 % oxygen for 50 min. Phosphate buffered saline or 7,8-DHF (5 mg/kg) were administered daily for 7 days intraperitoneally. Control groups of naïve or carotid artery ligation only mice were studied. Fluorescein angiography was performed in acute (two weeks post-exposure) and chronic (four weeks post-exposure) time points. Retinal artery width, retinal vein width, and collateral vessel length were quantified. RESULTS: Ligation of the common carotid artery alone caused retinal artery dilation in acute and chronic time points, but had no effect on retinal veins. At acute time point, HI caused increased retinal artery vasodilation, but was reversed by 7,8-DHF. HI caused short collateral vessel formation in ipsilateral eyes, rescued by 7,8-DHF treatment. CONCLUSION: Retinal artery vasodilation and collateral vessel formation due to HI were rescued by 7,8-DHF treatment. Retinal and collateral vessel monitoring could be diagnostic biomarkers for HI severity. Studies to elucidate mechanisms of 7,8-DHF action on retinal vessels could aid development of therapies for neonatal HI.


Subject(s)
Asphyxia Neonatorum , Hypoxia-Ischemia, Brain , Retinal Diseases , Vascular System Injuries , Animals , Animals, Newborn , Biomarkers , Humans , Hypoxia , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/drug therapy , Infant, Newborn , Ischemia/complications , Mice , Mice, Inbred C57BL , Oxygen , Phosphates , Receptor Protein-Tyrosine Kinases , Vascular System Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...