Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36905371

ABSTRACT

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phenotype , Phylogeny , Plant Roots/metabolism
2.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36522481

ABSTRACT

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Amygdala/physiology , Thalamus , Basolateral Nuclear Complex/physiology , Conditioning, Classical/physiology , Arousal
3.
Nature ; 608(7923): 586-592, 2022 08.
Article in English | MEDLINE | ID: mdl-35859170

ABSTRACT

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Subject(s)
Basolateral Nuclear Complex , Learning , Neural Pathways , Neurotensin , Punishment , Reward , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Calcium/metabolism , Cues , Neuronal Plasticity , Neurotensin/metabolism , Optogenetics , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
4.
Curr Biol ; 30(10): 1845-1854.e4, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32302586

ABSTRACT

Fluid navigation requires constant updating of planned movements to adapt to evolving obstacles and goals. For that reason, a neural substrate for navigation demands spatial and environmental information and the ability to effect actions through efferents. The secondary motor cortex (M2) is a prime candidate for this role given its interconnectivity with association cortices that encode spatial relationships and its projection to the primary motor cortex. Here, we report that M2 neurons robustly encode both planned and current left/right turning actions across multiple turn locations in a multi-route navigational task. Comparisons within a common statistical framework reveal that M2 neurons differentiate contextual factors, including environmental position, route, action sequence, orientation, and choice availability. Despite significant modulation by environmental factors, action planning, and execution are the dominant output signals of M2 neurons. These results identify the M2 as a structure integrating spatial information toward the updating of planned movements.


Subject(s)
Motor Cortex/physiology , Orientation, Spatial/physiology , Spatial Navigation/physiology , Animals , Behavior, Animal/physiology , Male , Rats , Rats, Sprague-Dawley
5.
Nat Neurosci ; 20(2): 170-172, 2017 02.
Article in English | MEDLINE | ID: mdl-27991899

ABSTRACT

Flexible navigation demands knowledge of boundaries, routes and their relationships. Within a multi-path environment, a subpopulation of subiculum neurons robustly encoded the axis of travel. The firing of axis-tuned neurons peaked bimodally, at head orientations 180° apart. Environmental manipulations showed these neurons to be anchored to environmental boundaries but to lack axis tuning in an open arena. Axis-tuned neurons thus provide a powerful mechanism for mapping relationships between routes and the larger environmental context.


Subject(s)
Action Potentials/physiology , Hippocampus/metabolism , Neurons/metabolism , Orientation/physiology , Space Perception/physiology , Animals , Brain Mapping/methods , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...