Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 18(4)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30010926

ABSTRACT

Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate. The harlequin bug (Murgantia histrionica, Hemiptera: Pentatomidae, Hahn 1834) is a widespread invasive crop pest with variable patterning where developmental plasticity in melanization could affect performance. To investigate the impact of temperature and photoperiod on melanization and size, nymphs were reared under two temperatures and two photoperiods simulating summer and fall seasons. The size and degree of melanization of adults were quantified using digital imagery. To assess the effect of coloration on the amount of heat absorption, we monitored the temperature of adults in a heating experiment. Overall, our results supported the thermal melanism hypothesis and temperature had a comparatively larger effect on coloration and size than photoperiod. When heated, the body temperature of individuals with darker pigmentation increased more relative to the ambient air temperature than individuals with lighter pigmentation. These results suggest that colder temperatures experienced late in the season can induce developmental plasticity for a phenotype that improves thermoregulation in this species. Our work highlights environmental signals and consequences for individual performance due to thermal melanism in a common invasive species, where capacity to respond to changing environments is likely contributing to its spread.


Subject(s)
Cold Temperature , Heteroptera/physiology , Hot Temperature , Photoperiod , Pigmentation , Animals , Heteroptera/growth & development , Nymph/growth & development , Nymph/physiology , Seasons , Virginia
2.
Physiol Biochem Zool ; 83(2): 263-75, 2010.
Article in English | MEDLINE | ID: mdl-20151817

ABSTRACT

In endotherms, metabolic performance is associated with a wide array of ecological traits, including species distribution. Researchers have suggested that the northern boundaries of North American passerines are limited by their ability to sustain the high metabolic rates required for thermoregulation. Black-capped chickadees (Poecile atricapillus; BC) are year-round residents in most of Canada and the northern half of the United States, whereas Carolina chickadees (Poecile carolinensis; CA) are found exclusively in the southeastern United States. These species hybridize along a narrow contact zone that has been moving northward at a rate of about 1.6 km per decade, coincident with warming temperatures in Ohio. The location of the chickadee hybrid zone in Ohio closely matches air temperature isotherms, further suggesting that metabolic rate may correlate with distribution in these species. We tested the hypothesis that distribution patterns of chickadees are linked with their rate of metabolism. For populations of BC and CA chickadees, we measured basal metabolic rates (BMRs) and cold-induced peak metabolic rates from areas that differ in winter temperatures and supplemented this information with data from other studies. Although our findings suggest a general relationship between lower air temperatures and higher metabolic rate among black-capped chickadee populations, this trend was not robust across all locations. There was no significant relationship between lower air temperatures and metabolism in Carolina chickadees. Within Ohio, hybrids had a significantly higher mass-corrected BMR than either parental species. We suggest that the mtDNA-nDNA mismatch of hybrids may produce less efficient mitochondrial protein complexes, which in turn affects the efficiency of ATP production, thereby increasing rate of oxygen consumption to meet ATP demands.


Subject(s)
Body Temperature Regulation/physiology , Songbirds/physiology , Animals , Basal Metabolism/physiology , Body Size/physiology , Cold Temperature , Demography , Environment , Mitochondria/physiology , Ohio , Oxygen Consumption/physiology , Songbirds/metabolism , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...