Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 8213, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859256

ABSTRACT

Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.


Subject(s)
Mannosephosphates/metabolism , Receptor, IGF Type 2/metabolism , Tissue Plasminogen Activator/metabolism , Acetylglucosamine/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Insulin-Like Growth Factor II/chemistry , Insulin-Like Growth Factor II/metabolism , Ligands , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Receptor, IGF Type 2/chemistry , Sf9 Cells , Spodoptera , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/physiology
2.
Commun Biol ; 3(1): 498, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908216

ABSTRACT

The cation-independent mannose 6-phosphate receptor (CI-MPR, IGF2 receptor or CD222), is a multifunctional glycoprotein required for normal development. Through the receptor's ability to bind unrelated extracellular and intracellular ligands, it participates in numerous functions including protein trafficking, lysosomal biogenesis, and regulation of cell growth. Clinically, endogenous CI-MPR delivers infused recombinant enzymes to lysosomes in the treatment of lysosomal storage diseases. Although four of the 15 domains comprising CI-MPR's extracellular region bind phosphorylated glycans on lysosomal enzymes, knowledge of how CI-MPR interacts with ~60 different lysosomal enzymes is limited. Here, we show by electron microscopy and hydroxyl radical protein footprinting that the N-terminal region of CI-MPR undergoes dynamic conformational changes as a consequence of ligand binding and different pH conditions. These data, coupled with X-ray crystallography, surface plasmon resonance and molecular modeling, allow us to propose a model explaining how high-affinity carbohydrate binding is achieved through allosteric domain cooperativity.


Subject(s)
Lysosomal Storage Diseases/genetics , Lysosomes/genetics , Protein Conformation , Receptor, IGF Type 2/ultrastructure , Allosteric Regulation/genetics , Binding Sites/genetics , Cations/chemistry , Crystallography, X-Ray , Humans , Hydroxyl Radical/chemistry , Ligands , Lysosomal Storage Diseases/enzymology , Lysosomal Storage Diseases/pathology , Lysosomes/enzymology , Mannose/metabolism , Microscopy, Electron , Protein Footprinting/methods , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/genetics , Surface Plasmon Resonance
3.
Methods Mol Biol ; 1722: 105-116, 2018.
Article in English | MEDLINE | ID: mdl-29264801

ABSTRACT

The cation-dependent mannose 6-phosphate receptor (CD-MPR) is a single-pass type I membrane protein. This protein functions to transport lysosomal enzymes displaying phosphomannosyl residues from the Golgi complex and the cell surface to the lysosome. This glycosylated protein contains three disulfide bridges in its 159-residue extracytoplasmic domain. One of the problems with studying eukaryotic membrane proteins is isolating sufficient quantities. Structural studies typically require several hundred milligrams of highly purified protein. Here we present a method to isolate milligram quantities of CD-MPR/Asn81 suitable for structural studies.


Subject(s)
Receptor, IGF Type 2/biosynthesis , Receptor, IGF Type 2/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Animals , Baculoviridae , Cell Membrane/chemistry , Cloning, Molecular , Genetic Vectors , Glycosylation , Lysosomes/metabolism , Protein Transport , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sf9 Cells
4.
Biochemistry ; 54(26): 4097-111, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26062005

ABSTRACT

N-Glycans are modified as part of a quality control mechanism during glycoprotein folding in the endoplasmic reticulum (ER). Glucosidase II (GII) plays a critical role by generating monoglucosylated glycans that are recognized by lectin chaperones, calnexin and calreticulin. To understand how the hydrolytic activity of GIIα is enhanced by the mannose 6-phosphate receptor (MPR) homology domain (MRH domain) of its ß subunit, we now report a 1.6 Å resolution crystal structure of the MRH domain of GIIß bound to mannose. A comparison of ligand-bound and unbound structures reveals no major difference in their overall fold, but rather a repositioning of side chains throughout the binding pocket, including Y372. Mutation of Y372 inhibits GII activity, demonstrating an important role for Y372 in regulating GII activity. Comparison of the MRH domains of GIIß, MPRs, and the ER lectin OS-9 identified conserved residues that are critical for the structural integrity and architecture of the carbohydrate binding pocket. As shown by nuclear magnetic resonance spectroscopy, mutations of the primary binding pocket residues and adjacent W409, all of which inhibit the activity of GII both in vitro and in vivo, do not cause a significant change in the overall fold of the GIIß MRH domain but impact locally the stability of the binding pocket. W409 does not directly contact mannose; rather, its indole ring is stabilized by binding into a hydrophobic pocket of an adjacent crystallographic neighbor. This suggests that W409 interacts with a hydrophobic region of the GIIß or GIIα subunit to modulate its effect on GII activity.


Subject(s)
Lectins/metabolism , Mannose/metabolism , Schizosaccharomyces/enzymology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Point Mutation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptor, IGF Type 2/metabolism , Schizosaccharomyces/chemistry , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Sequence Alignment , alpha-Glucosidases/genetics
5.
Protein Expr Purif ; 111: 91-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25863146

ABSTRACT

The cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that interacts with diverse ligands and plays central roles in autophagy, development, and tumor suppression. By delivering newly synthesized phosphomannosyl-containing acid hydrolases from the Golgi to endosomal compartments, CI-MPR is an essential component in the generation of lysosomes that are critical for the maintenance of cellular homeostasis. The ability of CI-MPR to interact with ∼60 different acid hydrolases is facilitated by its large extracellular region, with four out of its 15 domains binding phosphomannosyl residues. Although the glycan specificity of CI-MPR has been elucidated, the molecular basis of carbohydrate binding has not been determined for two out of these four carbohydrate recognition domains (CRD). Here we report expression of CI-MPR's CRD located in domain 5 that preferentially binds phosphodiester-containing glycans. Domain 5 of CI-MPR was expressed in Escherichia coli BL21 (DE3) cells as a fusion protein containing an N-terminal histidine tag and the small ubiquitin-like modifier (SUMO) protein. The His6-SUMO-CRD construct was recovered from inclusion bodies, refolded in buffer to facilitate disulfide bond formation, and subjected to Ni-NTA affinity chromatography and size exclusion chromatography. Surface plasmon resonance analyses demonstrated that the purified protein was active and bound phosphorylated glycans. Characterization by NMR spectroscopy revealed high quality (1)H-(15)N HSQC spectra. Additionally, crystallization conditions were identified and a crystallographic data set of the CRD was collected to 1.8Šresolution. Together, these studies demonstrate the feasibility of producing CI-MPR's CRD suitable for three-dimensional structure determination by NMR spectroscopic and X-ray crystallographic approaches.


Subject(s)
Escherichia coli/metabolism , Gene Expression , Receptor, IGF Type 2 , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Nuclear Magnetic Resonance, Biomolecular , Receptor, IGF Type 2/biosynthesis , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
6.
Glycobiology ; 25(6): 591-606, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25573276

ABSTRACT

The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in lysosome biogenesis by targeting ∼ 60 different phosphomannosyl-containing acid hydrolases to the lysosome. This type I membrane glycoprotein has a large extracellular region comprised of 15 homologous domains. Two mannose 6-phosphate (M6P) binding sites have been mapped to domains 3 and 9, whereas domain 5 binds preferentially to the phosphodiester, M6P-N-acetylglucosamine (GlcNAc). A structure-based sequence alignment predicts that the C-terminal domain 15 contains three out of the four conserved residues identified as essential for carbohydrate recognition by domains 3, 5 and 9 of the CI-MPR, but lacks two cysteine residues that are predicted to form a disulfide bond. To determine whether domain 15 of the CI-MPR has lectin activity and to probe its carbohydrate-binding specificity, truncated forms of the CI-MPR were tested for binding to acid hydrolases with defined N-glycans in surface plasmon resonance analyses, and used to interrogate a phosphorylated glycan microarray. The results show that a construct encoding domains 14-15 binds both M6P and M6P-GlcNAc with similar affinity (Kd = 13 and 17 µM, respectively). Site-directed mutagenesis studies demonstrate the essential role of the conserved Tyr residue in domain 15 for phosphomannosyl binding. A structural model of domain 15 was generated that predicted an Arg residue to be in the binding pocket and mutagenesis studies confirmed its important role in carbohydrate binding. Together, these results show that the CI-MPR contains a fourth carbohydrate-recognition site capable of binding both phosphomonoesters and phosphodiesters.


Subject(s)
Mannosephosphates/metabolism , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Animals , Binding Sites , Cations , Cattle , Hydrolases/metabolism , Microarray Analysis , Models, Molecular , Surface Plasmon Resonance
7.
J Biol Chem ; 288(23): 16460-16475, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23609449

ABSTRACT

Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIß subunit. GIIß participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIß MRH domain by NMR spectroscopy. It adopts a ß-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIß but not in other MRHs that influences GII glucose trimming activity.


Subject(s)
Endoplasmic Reticulum , Glycoproteins , Protein Folding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces/enzymology , alpha-Glucosidases , Crystallography, X-Ray , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Mannose/chemistry , Mannose/genetics , Mannose/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
8.
Glycobiology ; 22(7): 983-96, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22369936

ABSTRACT

The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.


Subject(s)
Polysaccharides/chemistry , Receptor, IGF Type 2/biosynthesis , Zebrafish Proteins/biosynthesis , Amino Acid Sequence , Animals , Binding Sites , Binding, Competitive , Carbohydrate Conformation , Carbohydrate Sequence , Cells, Cultured , Cellulases/chemistry , Conserved Sequence , Evolution, Molecular , Humans , Immobilized Proteins/chemistry , Molecular Sequence Data , Protein Array Analysis , Protein Binding , Protein Structure, Tertiary , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/isolation & purification , Sugar Phosphates/chemistry , Surface Plasmon Resonance , Vertebrates , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/isolation & purification , alpha-Glucosidases/chemistry
9.
Biochim Biophys Acta ; 1810(9): 815-26, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21723917

ABSTRACT

BACKGROUND: The mannose 6-phosphate receptor homology (MRH) domain-containing family of proteins, which include recycling receptors (mannose 6-phosphate receptors, MPRs), resident endoplasmic reticulum (ER) proteins (glucosidase II ß-subunit, XTP3-B, OS-9), and a Golgi glycosyltransferase (GlcNAc-phosphotransferase γ-subunit), are characterized by the presence of one or more MRH domains. Many MRH domains act as lectins and bind specific phosphorylated (MPRs) or non-phosphorylated (glucosidase II ß-subunit, XTP3-B and OS-9) high mannose-type N-glycans. The MPRs are the only proteins known to bind mannose 6-phosphate (Man-6-P) residues via their MRH domains. SCOPE OF REVIEW: Recent biochemical and structural studies that have provided valuable insight into the glycan specificity and mechanisms of carbohydrate recognition by this diverse group of MRH domain-containing proteins are highlighted. MAJOR CONCLUSIONS: Currently, three-dimensional structures are known for ten MRH domains, revealing the conservation of a similar fold. OS-9 and the MPRs use the same four residues (Gln, Arg, Glu, and Tyr) to bind mannose. GENERAL SIGNIFICANCE: The MRH domain-containing proteins play key roles in the secretory pathway: glucosidase II, XTP3-B, and OS-9 are involved in the recognition of nascent glycoproteins, whereas the MPRs play an essential role in lysosome biogenesis by targeting Man-6-P-containing lysosomal enzymes to the lysosome.


Subject(s)
Receptor, IGF Type 2/chemistry , Secretory Pathway/physiology , Amino Acid Sequence , Animals , Humans , Lectins/chemistry , Lectins/metabolism , Lysosomes/enzymology , Lysosomes/physiology , Mannosephosphates/metabolism , Models, Molecular , Neoplasm Proteins/chemistry , Polysaccharides/metabolism , Protein Structure, Tertiary , Receptor, IGF Type 2/metabolism , Sequence Alignment , Substrate Specificity
10.
Proc Natl Acad Sci U S A ; 107(28): 12493-8, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20615935

ABSTRACT

Mannose 6-phosphate (Man-6-P)-dependent trafficking is vital for normal development. The biogenesis of lysosomes, a major cellular site of protein, carbohydrate, and lipid catabolism, depends on the 300-kDa cation-independent Man-6-P receptor (CI-MPR) that transports newly synthesized acid hydrolases from the Golgi. The CI-MPR recognizes lysosomal enzymes bearing the Man-6-P modification, which arises by the addition of GlcNAc-1-phosphate to mannose residues and subsequent removal of GlcNAc by the uncovering enzyme (UCE). The CI-MPR also recognizes lysosomal enzymes that elude UCE maturation and instead display the Man-P-GlcNAc phosphodiester. This ability of the CI-MPR to target phosphodiester-containing enzymes ensures lysosomal delivery when UCE activity is deficient. The extracellular region of the CI-MPR is comprised of 15 repetitive domains and contains three distinct Man-6-P binding sites located in domains 3, 5, and 9, with only domain 5 exhibiting a marked preference for phosphodiester-containing lysosomal enzymes. To determine how the CI-MPR recognizes phosphodiesters, the structure of domain 5 was determined by NMR spectroscopy. Although domain 5 contains only three of the four disulfide bonds found in the other seven domains whose structures have been determined to date, it adopts the same fold consisting of a flattened beta-barrel. Structure determination of domain 5 bound to N-acetylglucosaminyl 6-phosphomethylmannoside, along with mutagenesis studies, revealed the residues involved in diester recognition, including Y679. These results show the mechanism by which the CI-MPR recognizes Man-P-GlcNAc-containing ligands and provides new avenues to investigate the role of phosphodiester-containing lysosomal enzymes in the biogenesis of lysosomes.


Subject(s)
Lysosomes/enzymology , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Acetylglucosamine/analogs & derivatives , Binding Sites , Carbohydrates , Cations/chemistry , Cations/metabolism , Golgi Apparatus/metabolism , Humans , Hydrolases/metabolism , Ligands , Lysosomes/metabolism , Mannosephosphates , Phosphoric Diester Hydrolases , Receptors, Somatomedin/metabolism
11.
Biochemistry ; 49(1): 236-46, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-19928875

ABSTRACT

The 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) plays a key role in the delivery of lysosomal enzymes to the lysosome by binding newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and diverting them from the secretory pathway. Previous studies on a truncated form of the receptor comprised of only the soluble extracellular region (sCD-MPR, residues 1-154) have shown that the CD-MPR exists as a homodimer and exhibits two distinct conformations in the ligand-bound versus ligand-unbound states, involving changes in quaternary structure and positioning of loop D, the residues of which form a side of the binding pocket in the presence of ligand. To determine the role of intermonomer contacts in the functioning of the sCD-MPR, site-directed mutagenesis was used to generate a construct lacking a salt bridge (Glu19-Lys137) that tethers the N-terminal alpha-helix of one subunit to loop D of the other subunit in the ligand-bound form. Here we show by surface plasmon resonance analyses and NMR spectroscopy that the elimination of this intermonomer salt bridge significantly decreases the binding affinity of the mutant receptor (E19Q/K137M) toward lysosomal enzymes and Man-6-P. Analyses of the E19Q/K137M mutant receptor crystallized under various conditions revealed an altered quaternary structure that is intermediate between those observed in the ligand-bound and ligand-unbound states. Taken together, the results demonstrate a key role for intermonomer interactions in the structure and functioning of the CD-MPR.


Subject(s)
Lysosomes/enzymology , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Binding Sites , Crystallography, X-Ray , Glucuronidase/chemistry , Glucuronidase/metabolism , Humans , Kinetics , Ligands , Lysosomes/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Receptor, IGF Type 2 , Receptors, Cytoplasmic and Nuclear/genetics , Structure-Activity Relationship , Substrate Specificity , Surface Plasmon Resonance
12.
Biochemistry ; 49(3): 635-44, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20028034

ABSTRACT

The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that binds diverse intracellular and extracellular ligands with high affinity. The CI-MPR is a receptor for plasminogen, and this interaction can be inhibited by lysine analogues. To characterize the molecular basis for this interaction, surface plasmon resonance (SPR) analyses were performed using truncated forms of the CI-MPR and plasminogen. The results show that the N-terminal region of the CI-MPR containing domains 1 and 2, but not domain 1 alone, of the receptor's 15-domain extracytoplasmic region binds plasminogen (K(d) = 5 +/- 1 nM) with an affinity similar to that of the full-length receptor (K(d) = 20 +/- 6 nM). In addition to its C-terminal serine protease domain, plasminogen contains lysine binding sites (LBS), which are located within each of its five kringle domains, except kringle 3. We show that kringles 1-4, but not kringles 1-3, bind the CI-MPR, indicating an essential role for the LBS in kringle 4 of plasminogen. To identify the lysine residue(s) of the CI-MPR that serve(s) as an essential determinant for recognition by the LBS of plasminogen, site-directed mutagenesis studies were carried out using a construct encoding the N-terminal three domains of the CI-MPR (Dom1-3His) which contains both a mannose 6-phosphate (Man-6-P) and plasminogen binding site. The results demonstrate two lysine residues (Lys53 located in domain 1 and Lys125 located in the loop connecting domains 1 and 2) of the CI-MPR are key determinants for plasminogen binding but are not required for Man-6-P binding.


Subject(s)
Plasminogen/chemistry , Plasminogen/metabolism , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Animals , Binding Sites , Cations/chemistry , Cattle , Humans , Kinetics , Kringles , Ligands , Lysine/genetics , Lysine/metabolism , Plasminogen/genetics , Substrate Specificity , Surface Plasmon Resonance
13.
J Biol Chem ; 284(50): 35215-26, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19840944

ABSTRACT

The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting approximately 60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5-9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1-3, interacts with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.


Subject(s)
Mannosephosphates/metabolism , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Animals , Binding Sites , Carbohydrate Conformation , Carbohydrate Sequence , Glucuronidase/genetics , Glucuronidase/metabolism , Humans , Mannosephosphates/chemistry , Microarray Analysis , Molecular Sequence Data , Phosphorylation , Polysaccharides/analysis , Receptor, IGF Type 2/genetics
14.
Curr Opin Struct Biol ; 19(5): 534-42, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19801188

ABSTRACT

The two P-type lectins, the 46kDa cation-dependent mannose-6-phosphate (Man-6-P) receptor (CD-MPR), and the 300kDa cation-independent Man-6-P receptor (CI-MPR), are the founding members of the growing family of mannose-6-phosphate receptor homology (MRH) proteins. A major cellular function of the MPRs is to transport Man-6-P-containing acid hydrolases from the Golgi to endosomal/lysosomal compartments. Recent advances in the structural analyses of both CD-MPR and CI-MPR have revealed the structural basis for phosphomannosyl recognition by these receptors and provided insights into how the receptors load and unload their cargo. A surprising finding is that the CD-MPR is dynamic, with at least two stable quaternary states, the open (ligand-bound) and closed (ligand-free) conformations, similar to those of hemoglobin. Ligand binding stabilizes the open conformation; changes in the pH of the environment at the cell surface and in endosomal compartments weaken the ligand-receptor interaction and/or weaken the electrostatic interactions at the subunit interface, resulting in the closed conformation.


Subject(s)
Carbohydrate Metabolism , Carbohydrates/chemistry , Receptor, IGF Type 2/metabolism , Animals , Binding Sites , Humans , Ligands , Protein Conformation , Receptor, IGF Type 2/chemistry
15.
J Biol Chem ; 284(50): 35201-14, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19801653

ABSTRACT

The specificity of the cation-independent and -dependent mannose 6-phosphate receptors (CI-MPR and CD-MPR) for high mannose-type N-glycans of defined structure containing zero, one, or two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on a phosphorylated glycan microarray. Amine-activated glycans were covalently printed on N-hydroxysuccinimide-activated glass slides and interrogated with different concentrations of recombinant CD-MPR or soluble CI-MPR. Neither receptor bound to non-phosphorylated glycans. The CD-MPR bound weakly or undetectably to the phosphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception of a single Man7GlcNAc2-R isomer that contained a single Man-6-P residue. By contrast, the CI-MPR bound with high affinity to glycans containing either phospho-mono- or -diesters although, like the CD-MPR, it differentially recognized isomers of phosphorylated Man7GlcNAc2-R. This differential recognition of phosphorylated glycans by the CI- and CD-MPRs has implications for understanding the biosynthesis and targeting of lysosomal hydrolases.


Subject(s)
Lectins/chemistry , Microarray Analysis , Polysaccharides/analysis , Protein Isoforms/metabolism , Receptor, IGF Type 2/metabolism , Animals , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Phosphorylation
16.
Glycobiology ; 18(9): 664-78, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18621992

ABSTRACT

The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.


Subject(s)
Carbohydrate Metabolism , Receptor, IGF Type 2/metabolism , Amino Acid Sequence , Animals , Binding Sites , Carbohydrate Metabolism/physiology , Crystallography, X-Ray , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycoproteins/physiology , Humans , Mannosephosphates/chemistry , Mannosephosphates/metabolism , Models, Biological , Models, Molecular , Molecular Sequence Data , Oligosaccharides/metabolism , Protein Binding , Receptor, IGF Type 2/chemistry , Sequence Homology, Amino Acid
17.
J Biol Chem ; 283(15): 10124-34, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18272523

ABSTRACT

The cation-dependent mannose 6-phosphate receptor (CD-MPR) is a key component of the lysosomal enzyme targeting system that binds newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and transports them to endosomal compartments. The interaction between the MPRs and its ligands is pH-dependent; the homodimeric CD-MPR binds lysosomal enzymes optimally in the pH environment of the trans Golgi network (pH approximately 6.5) and releases its cargo in acidic endosomal compartments (

Subject(s)
Mannosephosphates/chemistry , Receptor, IGF Type 2/chemistry , Animals , Binding Sites , Biological Transport/physiology , Cattle , Endosomes/enzymology , Hydrogen-Ion Concentration , Lysosomes/enzymology , Mannosephosphates/metabolism , Protein Binding/physiology , Protein Structure, Quaternary/physiology , Receptor, IGF Type 2/metabolism , trans-Golgi Network/enzymology
18.
J Biol Chem ; 279(32): 34000-9, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15169779

ABSTRACT

The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.


Subject(s)
Carbohydrate Metabolism , Peptide Fragments/chemistry , Receptor, IGF Type 2/chemistry , Receptor, IGF Type 2/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cattle , Crystallization , Gene Expression , Glucuronidase/metabolism , Mannose/metabolism , Mannosephosphates/metabolism , Molecular Sequence Data , Molecular Structure , Mutagenesis, Site-Directed , Peptide Fragments/genetics , Receptor, IGF Type 2/genetics , Recombinant Proteins
19.
EMBO J ; 23(10): 2019-28, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15085180

ABSTRACT

The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor.


Subject(s)
Oligosaccharides/metabolism , Plasminogen/metabolism , Protein Structure, Tertiary , Receptor, IGF Type 2/chemistry , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Animals , Binding Sites , Biological Transport/physiology , Cattle , Crystallography, X-Ray , Lysosomes/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Weight , Protein Structure, Secondary , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Receptors, Urokinase Plasminogen Activator , Sequence Alignment
20.
J Biol Chem ; 277(12): 10156-61, 2002 Mar 22.
Article in English | MEDLINE | ID: mdl-11786557

ABSTRACT

Mannose 6-phosphate receptors (MPRs) participate in the biogenesis of lysosomes in higher eukaryotes by transporting soluble acid hydrolases from the trans-Golgi network to late endosomal compartments. The receptors release their ligands into the acidic environment of the late endosome and then return to the trans-Golgi network to repeat the process. However, the mechanism that facilitates ligand binding and dissociation upon changes in pH is not known. We report the crystal structure of the extracytoplasmic domain of the homodimeric cation-dependent MPR in a ligand-free form at pH 6.5. A comparison of the ligand-bound and ligand-free structures reveals a significant change in quaternary structure as well as a reorganization of the binding pocket, with the most prominent change being the relocation of a loop (residues Glu(134)-Cys(141)). The movements involved in the bound-to-free transition of the cation-dependent MPR are reminiscent of those of the oxy-to-deoxy hemoglobin transition. These results allow us to propose a mechanism by which the receptor regulates its ligand binding upon changes in pH; the pK(a) of Glu(133) appears to be responsible for ligand release in the acidic environment of the late endosomal compartment, and the pK(a) values of the sugar phosphate and His(105) are accountable for its inability to bind ligand at the cell surface where the pH is about 7.4.


Subject(s)
Receptor, IGF Type 2/chemistry , Amino Acid Sequence , Binding Sites , Circular Dichroism , Cysteine/chemistry , Cytoplasm/metabolism , Dimerization , Endosomes/metabolism , Glutamic Acid/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Molecular Sequence Data , Phosphates/chemistry , Protein Binding , Protein Conformation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, IGF Type 2/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...