Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Article in English | MEDLINE | ID: mdl-38822789

ABSTRACT

In view of the increasing global demand and consumption of gold, there is a growing need and effort to extract gold from alternative sources besides conventional mining, e.g., from water. This drive is mainly due to the potential benefits for the economy and the environment as these sources contain large quantities of the precious metal that can be utilized. Wastewater is one of these valuable sources in which the gold concentration can be in the ppb range. However, the effective selective recovery and recycling of ultratrace amounts of this metal remain a challenge. In this article, we describe the development of a covalent imine-based organic framework with pores containing thioanisole functional groups (TTASDFPs) formed by the condensation of a triazine-based triamine and an aromatic dialdehyde. The sulfur-functionalized pores served as effective chelating agents to bind Au3+ ions, as evidenced by the uptake of more than 99% of the 9 ppm Au3+ solution within 2 min. This is relatively fast kinetics compared with other adsorbents reported for gold adsorption. TTASDFP also showed a high removal capacity of 245 mg·g-1 and a clear selectivity toward gold ions. More importantly, the material can capture gold at concentrations as low as 1 ppb.

2.
Small ; : e2311064, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396219

ABSTRACT

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

3.
Small ; 19(42): e2303131, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37344349

ABSTRACT

Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.

4.
Nat Commun ; 14(1): 3765, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353549

ABSTRACT

Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.


Subject(s)
Cockayne Syndrome , Metal-Organic Frameworks , Humans , Nitro Compounds , Porosity
5.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049979

ABSTRACT

Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert-Mataga equation and multilinear analysis using Kamlet-Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors.

6.
Chemistry ; 29(34): e202300624, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36867728

ABSTRACT

Polycyclic aromatic endoperoxides are important sources of singlet oxygen (1 O2 ) and their formation from polyacenes is well established. Anthracene carboxyimides are of particular interest as they exhibit excellent antitumor activity and possess unique photochemical properties. However, the photooxygenation of the synthetically versatile anthracene carboxyimide moiety has not been reported due to its competing [4+4] photodimerization reaction. Herein, we describe the reversible photo-oxidation of an anthracene carboxyimide. X-ray crystallographic analysis surprisingly revealed the formation of a racemic mixture of chiral hydroperoxides, rather than the expected endoperoxide. The photoproduct undergoes both photo- and thermolysis to form 1 O2 . Activation parameters were derived for the thermolysis and the mechanisms of photooxygenation and thermolysis are discussed. The anthracene carboxyimide also showed high selectivity and sensitivity for nitrite anions in acidic aqueous media and possessed stimuli-responsive behaviour.

7.
Chem Commun (Camb) ; 58(97): 13463-13466, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36398625

ABSTRACT

The uptake of atmospheric moisture by hygroscopic materials can have marked effects on a material's physical and chemical properties. This is true of materials that go on to incorporate waters of hydration in their molecular structural lattice, forming stable hydrates with fluctuations in relative humidity (RH). Nevertheless, RH remains relatively uncontrolled for a variable that can fluctuate widely depending on geographical climate, weather fluctuations, and building HVAC system stability. Herein, we report a processable 1,8-napthalimide-based fluorophore-spacer-receptor system that unexpectedly exhibited reversible three-state fluorescence hydrochromism with changes in RH due to RH-induced solid state molecular rearrangement. Care should be taken to evaluate the impact of variations in RH when characterising the solid state emission properties of charged fluorescent materials.


Subject(s)
Geography
8.
Nat Commun ; 13(1): 3904, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798727

ABSTRACT

Ionic covalent organic frameworks (iCOFs) are new examples of porous materials and have shown great potential for various applications. When functionalized with suitable emission sites, guest uptake via the ionic moieties of iCOFs can cause a significant change in luminescence, making them excellent candidates for chemosensors. In here, we present a luminescence sensor in the form of an ionic covalent organic framework (TGH+•PD) composed of guanidinium and phenanthroline moieties for the detection of ammonia and primary aliphatic amines. TGH+•PD exhibits strong emission enhancement in the presence of selective primary amines due to the suppression of intramolecular charge transfer (ICT) with an ultra-low detection limit of 1.2 × 10‒7 M for ammonia. The presence of ionic moieties makes TGH+•PD highly dispersible in water, while deprotonation of the guanidinium moiety by amines restricts its ICT process and signals their presence by enhanced fluorescence emission. The presence of ordered pore walls introduces size selectivity among analyte molecules, and the iCOF has been successfully used to monitor meat products that release biogenic amine vapors upon decomposition due to improper storage.


Subject(s)
Metal-Organic Frameworks , Ammonia , Biogenic Amines , Cations , Fluorescence , Guanidine
9.
Nat Commun ; 13(1): 3169, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672299

ABSTRACT

Fabrication of covalent organic framework (COF) membranes for molecular transport has excited highly pragmatic interest as a low energy and cost-effective route for molecular separations. However, currently, most COF membranes are assembled via a one-step procedure in liquid phase(s) by concurrent polymerization and crystallization, which are often accompanied by a loosely packed and less ordered structure. Herein, we propose a two-step procedure via a phase switching strategy, which decouples the polymerization process and the crystallization process to assemble compact and highly crystalline COF membranes. In the pre-assembly step, the mixed monomer solution is casted into a pristine membrane in the liquid phase, along with the completion of polymerization process. In the assembly step, the pristine membrane is transformed into a COF membrane in the vapour phase of solvent and catalyst, along with the completion of crystallization process. Owing to the compact and highly crystalline structure, the resultant COF membranes exhibit an unprecedented permeance (water ≈ 403 L m-2 bar-1 h-1 and acetonitrile ≈ 519 L m-2 bar-1 h-1). Our two-step procedure via phase switching strategy can open up a new avenue to the fabrication of advanced organic crystalline microporous membranes.

10.
Arch Biochem Biophys ; 711: 109019, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34478730

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is demonstrated to be closely related to the disorder of gut microbiota and the intestinal mucosal barrier. Luteolin is a natural flavonoid with various activities. We aimed to investigate whether Luteolin can alleviate NAFLD and its possible mechanism involving the gut-liver axis. A rat NAFLD model was established by feeding a high-fat diet (HFD), and Luteolin was administered intragastrically. The effects of Luteolin on liver biochemical parameters, intestinal histopathology and integrity, gut microbiota, lipopolysaccharides (LPS), inflammatory cytokines, and the Toll-like receptor 4 (TLR4) signaling pathway were evaluated. We found that Luteolin restored the expression of the tight junction proteins in the intestine and ameliorated the increase permeability of the intestinal mucosa to Fluorescein isothiocyanate-dextran (FD4) caused by a high-fat diet, thus enhancing the function of the intestinal barrier. In addition, Luteolin inhibited the TLR4 signaling pathway in the liver, thereby reducing the secretion of pro-inflammatory factors and alleviating NAFLD. 16S rRNA gene sequencing revealed that Luteolin intervention significantly altered the composition of the gut microbiota in NAFLD rats and increased the richness of gut microbiota. Luteolin alleviates NAFLD in rats via restoration and repair of the damaged intestinal mucosal barrier and microbiota imbalance.


Subject(s)
Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Liver/drug effects , Luteolin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Body Weight/drug effects , Cytokines/metabolism , Diet, High-Fat , Dysbiosis/drug therapy , Insulin Resistance/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Non-alcoholic Fatty Liver Disease/pathology , Permeability , Rats, Wistar , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
11.
Chem Commun (Camb) ; 57(53): 6554-6557, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34110342

ABSTRACT

Water in our environment is ever present, particularly in our atmosphere, from which it may be adsorbed by materials hygroscopically. At the molecular level, the binding of water molecules to various materials is driven by weak interactions but can have profound effects on physical properties, including the donor-acceptor interactions in charge transfer (CT) salts. Herein we present the unexpected three-state hydrochromatic switching of a bipyridinium-based donor-acceptor self-complex with changes in relative humidity (RH) and subsequent stable hydrate formation. RH is typically an overlooked variable that can vary greatly. These findings suggest that care should be taken to consider fluctuations in RH when characterizing the solid state optical band gap and CT absorption bands for organic donor-acceptor CT salt complexes.

12.
Chemistry ; 27(36): 9360-9371, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33831265

ABSTRACT

Stimuli-responsive chromic materials such as photochromics, hydrochromics, thermochromics, and electrochromics have a long history of capturing the attention of scientists due to their potential industrial applications and novelty in popular culture. However, hybrid chromic materials that combine two or more stimuli-triggered color changing properties are not so well known. Herein, we report a design strategy that has led to a series of emissive 1,8-naphthalimide-viologen dyads which exhibit unusual dual photochromic and hydrochromic switching behavior in the solid-state when embedded in a cellulose matrix. This behavior manifests as reversible solid state fluorescence hydrochromism upon changes in atmospheric relative humidity (RH), and reversible solid state photochromism upon generation of a cellulose-stabilized viologen radical cation. In this design strategy, the bipyridinium unit serves as both a water-sensitive receptor for the hydrochromic fluorophore-receptor system, and a photochromic group, capable of eliciting its own visible colorimetric response, generating a fluorescence quenching radical cation with prolonged exposure to ultraviolet (UV) light. These dyes can be inkjet-printed onto cellulose paper or drop-cast as cellulose powder-based films and can be unidirectionally cycled between three different states which can be characteristically visualized under UV light or visible light. The material's photochromism, hydrochromism, and underlying mechanism of action was investigated using computational analysis, dynamic vapor sorption/desorption isotherms, electron paramagnetic resonance spectroscopy, and variable humidity UV-Vis adsorption and fluorescence spectroscopies.


Subject(s)
Naphthalimides , Viologens , Cellulose , Light , Ultraviolet Rays
13.
J Am Chem Soc ; 143(9): 3407-3415, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33629851

ABSTRACT

A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.

14.
RSC Adv ; 11(47): 29543-29554, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479532

ABSTRACT

Two calix[4]arene systems, C234+ and C244+ - where 2 corresponds to the number of viologen units and 3-4 corresponds to the number of carbon atoms connecting the viologen units to the macrocyclic core - have been synthesized and led to the formation of [3]pseudorotaxanes when combined with either CB[7] or CB[8]. The [3]pseudorotaxanes spontaneously dissociate upon reduction of the bipyridinium units as the result of intramolecular dimerization of the two face-to-face viologen radical cations. CB[7] and CB[8]-based [2]pseudorotaxanes containing monomeric viologen guest model compounds, MC32+ and MC4+, do not undergo decomplexation and dimerization following electrochemical reduction of their bipyridinium units.

15.
J Chem Phys ; 153(9): 094111, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32891084

ABSTRACT

The high-pressure properties of fluorine and chlorine are not yet well understood because both are highly reactive and volatile elements, which have made conducting diamond anvil cell and x-ray diffraction experiments a challenge. Here, we use ab initio methods to search for stable crystal structures of both elements at megabar pressures. We demonstrate how symmetry and geometric constraints can be combined to efficiently generate crystal structures that are composed of diatomic molecules. Our algorithm extends the symmetry driven structure search method [R. Domingos et al., Phys. Rev. B 98, 174107 (2018)] by adding constraints for the bond length and the number of atoms in a molecule while still maintaining generality. As a method of validation, we have tested our approach for dense hydrogen and reproduced the known molecular structures of Cmca-12 and Cmca-4. We apply our algorithm to study chlorine and fluorine in the pressure range of 10 GPa-4000 GPa while considering crystal structures with up to 40 atoms per unit cell. We predict chlorine to follow the same series of phase transformations as elemental iodine from Cmca to Immm to Fm3¯m, but at substantially higher pressures. We predict fluorine to transition from a C2/c to Cmca structure at 70 GPa, to a novel orthorhombic and metallic structure with P42/mmc symmetry at 2500 GPa, and finally to its cubic analog form with Pm3¯n symmetry at 3000 GPa.

16.
ACS Appl Mater Interfaces ; 12(38): 43160-43166, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32851843

ABSTRACT

On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer-Emmett-Teller (BET) surface areas of up to 450 m2 g-1, which is slightly lower than their nonfluorinated counterparts (up to 596 m2 g-1). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg-1 h-1 and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g-1. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance.

17.
J Am Chem Soc ; 142(31): 13450-13458, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32649828

ABSTRACT

Covalent organic frameworks (COFs) with intrinsic, tunable, and uniform pores are potent building blocks for separation membranes, yet poor processing ability and long processing time remain grand challenges. Herein, we report an engineered solid-vapor interface to fabricate a highly crystalline two-dimensional COF membrane with a thickness of 120 nm in 9 h, which is 8 times faster than that in the reported literature. Due to the ultrathin nature and ordered pores, the membrane exhibited an ultrahigh permeance (water, ∼411 L m-2 h-1 bar-1 and acetonitrile, ∼583 L m-2 h-1 bar-1) and excellent rejection of dye molecules larger than 1.4 nm (>98%). The membrane exhibited long-term operation which confirmed its outstanding stability. Our solid-vapor interfacial polymerization method may evolve into a generic platform to fabricate COFs and other organic framework membranes.

18.
ACS Appl Mater Interfaces ; 12(24): 27777-27785, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32420726

ABSTRACT

Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using -NH2-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the rCON-PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA-rCON MMMs exhibited a flux of 46.5 L m-2 h-1 bar-1, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na2SO4.

19.
Soft Matter ; 16(20): 4788-4799, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32400822

ABSTRACT

The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.


Subject(s)
Acetamides/chemistry , Indoles/chemistry , Pyridinium Compounds/chemistry , Receptors, Melatonin/agonists , Serotonin/analogs & derivatives , Surface-Active Agents/chemistry , Tryptamines/chemistry , Micelles , Serotonin/chemistry , Water/chemistry
20.
ACS Omega ; 5(11): 5691-5697, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226846

ABSTRACT

This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...