Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 229(Supplement_2): S265-S274, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-37995376

ABSTRACT

Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.


Subject(s)
Orthopoxvirus , Smallpox , Variola virus , Humans , Monkeypox virus , Monocytes
2.
Environ Toxicol Chem ; 42(12): 2747-2757, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37712519

ABSTRACT

The US Environmental Protection Agency (USEPA) is faced with long lists of chemicals that require hazard assessment. The present study is part of a larger effort to develop in vitro assays and quantitative structure-activity relationships applicable to untested chemicals on USEPA inventories through study of estrogen receptor (ER) binding and estrogen-mediated gene expression in fish. The present effort investigates metabolic activation of chemicals resulting in increased estrogenicity. Phenolphthalin (PLIN) was shown not to bind rainbow trout (Oncorhynchus mykiss) ER (rtER) in a competitive binding assay, but vitellogenin (Vtg) expression was induced in trout liver slices exposed to 10-4 and 10-3.7 M PLIN. Phenolphthalein (PLEIN), a metabolite of PLIN, was subsequently determined to be formed when slices were exposed to PLIN. It binds rtER with a relative binding affinity to 17ß-estradiol of 0.020%. Slices exposed to PLEIN expressed Vtg messenger RNA (mRNA) at 10-4.3 , 10-4 , and 10-3.7 M, with no detectable PLIN present. Thus, Vtg expression noted in PLIN slice exposures was explained by metabolism to PLEIN in trout liver slices. A second model chemical, 4,4'-methylenedianiline (MDA), was not shown to bind rtER but did induce Vtg mRNA production in tissue slices at 10-4.3 , 10-4 , and 10-3.7 M in amounts nearly equal to reference estradiol induction, thus indicating metabolic activation of MDA. A series of experiments were performed to identify a potential metabolite responsible for the observed increase in activity. Potential metabolites hydroxylamine-MDA, nitroso-MDA, azo-MDA, and azoxy-MDA were not observed. However, acetylated MDA was observed and tested in both ER-binding and tissue slice Vtg induction assays. Environ Toxicol Chem 2023;42:2747-2757. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Oncorhynchus mykiss , Xenobiotics , Humans , Animals , Activation, Metabolic , Xenobiotics/metabolism , Estradiol/metabolism , Vitellogenins/metabolism , Oncorhynchus mykiss/metabolism , RNA, Messenger/metabolism
3.
Antimicrob Agents Chemother ; 66(11): e0084122, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36222522

ABSTRACT

The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 µM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Smallpox , Vaccinia , Variola virus , Humans , Smallpox/drug therapy , Vaccinia/drug therapy , Vaccinia virus
4.
J Infect Dis ; 225(8): 1367-1376, 2022 04 19.
Article in English | MEDLINE | ID: mdl-32880628

ABSTRACT

BACKGROUND: The largest West African monkeypox outbreak began September 2017, in Nigeria. Four individuals traveling from Nigeria to the United Kingdom (n = 2), Israel (n = 1), and Singapore (n = 1) became the first human monkeypox cases exported from Africa, and a related nosocomial transmission event in the United Kingdom became the first confirmed human-to-human monkeypox transmission event outside of Africa. METHODS: Epidemiological and molecular data for exported and Nigerian cases were analyzed jointly to better understand the exportations in the temporal and geographic context of the outbreak. RESULTS: Isolates from all travelers and a Bayelsa case shared a most recent common ancestor and traveled to Bayelsa, Delta, or Rivers states. Genetic variation for this cluster was lower than would be expected from a random sampling of genomes from this outbreak, but data did not support direct links between travelers. CONCLUSIONS: Monophyly of exportation cases and the Bayelsa sample, along with the intermediate levels of genetic variation, suggest a small pool of related isolates is the likely source for the exported infections. This may be the result of the level of genetic variation present in monkeypox isolates circulating within the contiguous region of Bayelsa, Delta, and Rivers states, or another more restricted, yet unidentified source pool.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Nigeria/epidemiology , United Kingdom
5.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Article in English | MEDLINE | ID: mdl-34547055

ABSTRACT

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Subject(s)
Disease Models, Animal , Smallpox , Animals , Humans , Mice , Variola virus
6.
J Am Vet Med Assoc ; 258(11): 1205-1220, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33978439

ABSTRACT

OBJECTIVE: To provide epidemiological information on animal and human cases of rabies occurring in the United States during 2019 and summaries of 2019 rabies surveillance for Canada and Mexico. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the United States during 2019. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in the United States during 2019. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases. RESULTS: During 2019, 53 jurisdictions submitted 97,523 animal samples for rabies testing, of which 94,770 (97.2%) had a conclusive (positive or negative) test result. Of these, 4,690 tested positive for rabies, representing a 5.3% decrease from the 4,951 cases reported in 2018. Texas (n = 565 [12.0%]), New York (391 [8.3%]), Virginia (385 [8.2%]), North Carolina (315 [6.7%]), California (276 [5.9%]), and Maryland (269 [5.7%]) together accounted for almost half of all animal rabies cases reported in 2019. Of the total reported rabid animals, 4,305 (91.8%) were wildlife, with raccoons (n = 1,545 [32.9%]), bats (1,387 [29.6%]), skunks (915 [19.5%]), and foxes (361 [7.7%]) as the primary species confirmed with rabies. Rabid cats (n = 245 [5.2%]) and dogs (66 [1.4%]) accounted for > 80% of rabies cases involving domestic animals in 2019. No human rabies cases were reported in 2019. CONCLUSIONS AND CLINICAL RELEVANCE: The overall number of animal rabies cases decreased from 2018 to 2019. Laboratory diagnosis of rabies in animals is critical to ensure that human rabies postexposure prophylaxis is administered judiciously.


Subject(s)
Cat Diseases , Chiroptera , Dog Diseases , Rabies , Animals , Animals, Domestic , Animals, Wild , Canada , Cats , Dog Diseases/epidemiology , Dogs , Mexico , New York , North Carolina , Population Surveillance , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Raccoons , Texas , United States/epidemiology , Virginia
7.
Antiviral Res ; 191: 105086, 2021 07.
Article in English | MEDLINE | ID: mdl-33992710

ABSTRACT

Decades after the eradication of smallpox and the discontinuation of routine smallpox vaccination, over half of the world's population is immunologically naïve to variola virus and other orthopoxviruses (OPXVs). Even in those previously vaccinated against smallpox, protective immunity wanes over time. As such, there is a concomitant increase in the incidence of human OPXV infections worldwide. To identify novel antiviral compounds with potent anti-OPXV potential, we characterized the inhibitory activity of PAV-866 and other methylene blue derivatives against the prototypic poxvirus, vaccinia virus (VACV). These compounds inactivated virions prior to infection and consequently inhibited viral binding, fusion and entry. The compounds exhibited strong virucidal activity at non-cytotoxic concentrations, and inhibited VACV infection when added before, during or after viral adsorption. The compounds were effective against other OPXVs including monkeypox virus, cowpox virus and the newly identified Akhmeta virus. Altogether, these findings reveal a novel mode of inhibition that has not previously been demonstrated for small molecule compounds against VACV. Additional studies are in progress to determine the in vivo efficacy of these compounds against OPXVs and further characterize the anti-viral effects of these derivatives.


Subject(s)
Antiviral Agents/pharmacology , Methylene Blue/chemistry , Methylene Blue/pharmacology , Orthopoxvirus/drug effects , Antiviral Agents/chemistry , Cell Line , Cowpox virus/drug effects , HeLa Cells , Humans , Monkeypox virus/drug effects , Orthopoxvirus/classification , Vaccinia virus/drug effects , Virus Attachment/drug effects
8.
mSphere ; 6(1)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536322

ABSTRACT

Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 105 plaque-forming units (PFU; 90% lethal dose [LD90]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [Cmax]) and the time of the last quantifiable concentration (AUClast) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.


Subject(s)
Cytosine/analogs & derivatives , Monkeypox virus/drug effects , Organophosphonates/pharmacology , Organophosphonates/pharmacokinetics , Smallpox/drug therapy , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cytosine/pharmacokinetics , Cytosine/pharmacology , Disease Models, Animal , Dogs , Female , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Male , Variola virus/drug effects
10.
Viruses ; 12(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317132

ABSTRACT

Akhmeta virus is a zoonotic Orthopoxvirus first identified in 2013 in the country of Georgia. Subsequent ecological investigations in Georgia have found evidence that this virus is widespread in its geographic distribution within the country and in its host-range, with rodents likely involved in its circulation in the wild. Yet, little is known about the pathogenicity of this virus in rodents. We conducted the first laboratory infection of Akhmeta virus in CAST/EiJ Mus musculus to further characterize this novel virus. We found a dose-dependent effect on mortality and weight loss (p < 0.05). Anti-orthopoxvirus antibodies were detected in the second- and third-highest dose groups (5 × 104 pfu and 3 × 102 pfu) at euthanasia by day 10, and day 14 post-infection, respectively. Anti-orthopoxvirus antibodies were not detected in the highest dose group (3 × 106 pfu), which were euthanized at day 7 post-infection and had high viral load in tissues, suggesting they succumbed to disease prior to mounting an effective immune response. In order of highest burden, viable virus was detected in the nostril, lung, tail, liver and spleen. All individuals tested in the highest dose groups were DNAemic. Akhmeta virus was highly pathogenic in CAST/EiJ Mus musculus, causing 100% mortality when ≥3 × 102 pfu was administered.


Subject(s)
Animal Diseases/virology , Laboratory Infection/veterinary , Orthopoxvirus/physiology , Poxviridae Infections/veterinary , Animal Diseases/diagnosis , Animal Diseases/mortality , Animals , Female , Mice , Serologic Tests , Viral Load
12.
Eur J Pharm Sci ; 155: 105560, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32949750

ABSTRACT

A painless skin delivery of vaccine for disease prevention is of great advantage in improving compliance in patients. To test this idea as a proof of concept, we utilized a pDNA vaccine construct, pDNAg333-2GnRH that has a dual function of controlling rabies and inducing immunocontraception in animals. The pDNA was administered to mice in a nanoparticulate form delivered through the skin using the P.L.E.A.S.E.® (Precise Laser Epidermal System) microporation laser device. Laser application was well tolerated, and mild skin reaction was healed completely in 8 days. We demonstrated that adjuvanted nanoparticulate pDNA vaccine significantly upregulated the expression of co-stimulatory molecules in dendritic cells. After topical administration of the adjuvanted nano-vaccine in mice, the high avidity serum for GnRH antibodies were induced and maintained up to 9 weeks. The induced immune response was of a mixed Th1/Th2 profile as measured by IgG subclasses (IgG2a and IgG1) and cytokine levels (IFN-γ and IL-4). Using flow cytometry, we revealed an increase of CD8+ T-cells and CD45R B cells upon the administration of the adjuvanted vaccine. Our previous study used the same pDNA nanoparticulate vaccine through an IM route, and a comparable immune response was induced using P.L.E.A.S.E. However, the vaccine dose in the current study was four-fold less than what was applied through the IM route.We concluded that laser-assisted skin vaccination has a potential of becoming a safe and reliable vaccination tool for rabies vaccination in animals or even in humans for pre- or post-exposure prophylaxis.


Subject(s)
Rabies Vaccines , Rabies , Adjuvants, Immunologic , Animals , CD8-Positive T-Lymphocytes , Humans , Lasers , Mice , Mice, Inbred BALB C , Poloxamer , Vaccination
13.
Viruses ; 12(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32629851

ABSTRACT

Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Orthopoxvirus/physiology , Poxviridae Infections/metabolism , Poxviridae Infections/virology , Virus Internalization , Adaptor Proteins, Vesicular Transport/genetics , Glycosylation , Golgi Apparatus , HEK293 Cells , Host-Pathogen Interactions , Humans , Mutation , Orthopoxvirus/genetics , Poxviridae Infections/genetics
14.
Front Microbiol ; 11: 603, 2020.
Article in English | MEDLINE | ID: mdl-32390964

ABSTRACT

Orthopoxviruses (OPXVs) are an increasing threat to human health due to the growing population of OPXV-naive individuals after the discontinuation of routine smallpox vaccination. Antiviral drugs that are effective as postexposure treatments against variola virus (the causative agent of smallpox) or other OPXVs are critical in the event of an OPXV outbreak or exposure. The only US Food and Drug Administration-approved drug to treat smallpox, Tecovirimat (ST-246), exerts its antiviral effect by inhibiting extracellular virus (EV) formation, thereby preventing cell-cell and long-distance spread. We and others have previously demonstrated that host Golgi-associated retrograde proteins play an important role in monkeypox virus (MPXV) and vaccinia virus (VACV) EV formation. Inhibition of the retrograde pathway by small molecules such as Retro-2 has been shown to decrease VACV infection in vitro and to a lesser extent in vivo. To identify more potent inhibitors of the retrograde pathway, we screened a large panel of compounds containing a benzodiazepine scaffold like that of Retro-1, against VACV infection. We found that a subset of these compounds displayed better anti-VACV activity, causing a reduction in EV particle formation and viral spread compared to Retro-1. PA104 emerged as the most potent analog, inhibiting 90% viral spread at 1.3 µM with a high selectivity index. In addition, PA104 strongly inhibited two distinct ST-246-resistant viruses, demonstrating its potential benefit for use in combination therapy with ST-246. These data and further characterizations of the specific protein targets and in vivo efficacy of PA104 may have important implications for the design of effective antivirals against OPXV.

15.
Viruses ; 12(2)2020 02 05.
Article in English | MEDLINE | ID: mdl-32033253

ABSTRACT

Currently, no rabies virus-specific antiviral drugs are available. Ranpirnase has strong antitumor and antiviral properties associated with its ribonuclease activity. TMR-001, a proprietary bulk drug substance solution of ranpirnase, was evaluated against rabies virus in three cell types: mouse neuroblastoma, BSR (baby hamster kidney cells), and bat primary fibroblast cells. When TMR-001 was added to cell monolayers 24 h preinfection, rabies virus release was inhibited for all cell types at three time points postinfection. TMR-001 treatment simultaneous with infection and 24 h postinfection effectively inhibited rabies virus release in the supernatant and cell-to-cell spread with 50% inhibitory concentrations of 0.2-2 nM and 20-600 nM, respectively. TMR-001 was administered at 0.1 mg/kg via intraperitoneal, intramuscular, or intravenous routes to Syrian hamsters beginning 24 h before a lethal rabies virus challenge and continuing once per day for up to 10 days. TMR-001 at this dose, formulation, and route of delivery did not prevent rabies virus transit from the periphery to the central nervous system in this model (n = 32). Further aspects of local controlled delivery of other active formulations or dose concentrations of TMR-001 or ribonuclease analogues should be investigated for this class of drugs as a rabies antiviral therapeutic.


Subject(s)
Antiviral Agents/pharmacology , Rabies virus/drug effects , Ribonucleases/pharmacology , Virus Release/drug effects , Virus Replication/drug effects , Animals , Cell Line , Cells, Cultured , Chiroptera , Cricetinae , Female , Fibroblasts/virology , Mesocricetus , Mice , Rabies/prevention & control , Rabies virus/physiology , Ribonucleases/administration & dosage
16.
Viruses ; 12(1)2020 01 18.
Article in English | MEDLINE | ID: mdl-31963651

ABSTRACT

Human rabies post mortem diagnostic samples are often preserved in formalin. While immunohistochemistry (IHC) has been routinely used for rabies antigen detection in formalin-fixed tissue, the formalin fixation process causes nucleic acid fragmentation that may affect PCR amplification. This study reports the diagnosis of rabies in an individual from the Dominican Republic using both IHC and the LN34 pan-lyssavirus real-time RT-PCR assay on formalin-fixed brain tissue. The LN34 assay generates a 165 bp amplicon and demonstrated higher sensitivity than traditional PCR. Multiple efforts to amplify nucleic acid fragments larger than 300 bp using conventional PCR were unsuccessful, probably due to RNA fragmentation. Sequences generated from the LN34 amplicon linked the case to the rabies virus (RABV) strain circulating in the Ouest Department of Haiti to the border region between Haiti and the Dominican Republic. Direct sequencing of the LN34 amplicon allowed rapid and low-cost rabies genetic typing.


Subject(s)
Brain/pathology , Brain/virology , Lyssavirus/genetics , Rabies/diagnosis , Real-Time Polymerase Chain Reaction , Child, Preschool , Dominican Republic , Fatal Outcome , Female , Formaldehyde , Haiti , Humans , Immunohistochemistry , Molecular Typing , RNA, Viral/genetics , Rabies/virology , Specimen Handling
17.
J Am Vet Med Assoc ; 256(2): 195-208, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31910075

ABSTRACT

OBJECTIVE: To describe rabies and rabies-related events occurring during 2018 in the United States. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the United States during 2018. PROCEDURES: State and territorial public health departments provided data on animals submitted for rabies testing in 2018. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2018, 54 jurisdictions reported 4,951 rabid animals to the CDC, representing an 11.2% increase from the 4,454 rabid animals reported in 2017. Texas (n = 695 [14.0%]), Virginia (382 [7.7%]), Pennsylvania (356 [7.2%]), North Carolina (332 [6.7%]), Colorado (328 [6.6%]), and New York (320 [6.5%]) together accounted for almost half of all rabid animals reported in 2018. Of the total reported rabies cases, 4,589 (92.7%) involved wildlife, with bats (n = 1,635 [33.0%]), raccoons (1,499 [30.3%]), skunks (1,004 [20.3%]), and foxes (357 [7.2%]) being the major species. Rabid cats (n = 241 [4.9%]) and dogs (63 [1.3%]) accounted for > 80% of rabid domestic animals reported in 2018. There was a 4.6% increase in the number of samples submitted for testing in 2018, compared with the number submitted in 2017. Three human rabies deaths were reported in 2018, compared with 2 in 2017. CONCLUSIONS AND CLINICAL RELEVANCE: The overall number of animal rabies cases increased from 2017 to 2018. Laboratory diagnosis of rabies in animals is critical to ensure that human rabies postexposure prophylaxis is administered judiciously.


Subject(s)
Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies/veterinary , Animals , Animals, Domestic , Animals, Wild , Cats , Cattle , Dogs , Equidae , Humans , New York , North Carolina , Pennsylvania , Population Surveillance , Public Health , Raccoons , United States , Virginia
18.
Virus Res ; 275: 197772, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31593747

ABSTRACT

Numerous animal models of systemic orthopoxvirus disease have been developed to evaluate therapeutics against variola virus (VARV), the causative agent of smallpox. These animal models do not resemble the disease presentation in human smallpox and most used surrogate Orthopoxviruses. A rodent model using VARV has a multitude of advantages, and previous investigations identified the CAST/EiJ mouse as highly susceptible to monkeypox virus infection, making it of interest to determine if these rodents are also susceptible to VARV infection. In this study, we inoculated CAST/EiJ mice with a range of VARV doses (102-106 plaque forming units). Some animals had detectable viable VARV from the oropharynx between days 3 and 12 post inoculation. Despite evidence of disease, the CAST/EiJ mouse does not provide a model for clinical smallpox due to mild signs of morbidity and limited skin lesions. However, in contrast to previous rodent models using VARV challenge (i.e. prairie dogs and SCID mice), a robust immune response was observed in the CAST/EiJ mice (measured by Immunoglobulin G enzyme-linked immunosorbent assay). This is an advantage of this model for the study of VARV and presents a unique potential for the study of the immunomodulatory pathways following VARV infection.


Subject(s)
Disease Models, Animal , Mice , Smallpox/immunology , Variola virus/immunology , Variola virus/pathogenicity , Animals , Female , Humans , Mice, SCID , Smallpox/physiopathology , Smallpox/virology
19.
PLoS One ; 14(9): e0222612, 2019.
Article in English | MEDLINE | ID: mdl-31557167

ABSTRACT

Monkeypox virus (MPXV) is a member of the genus Orthopoxvirus, endemic in Central and West Africa. This viral zoonosis was introduced into the United States in 2003 via African rodents imported for the pet trade and caused 37 human cases, all linked to exposure to MPXV-infected black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs have since become a useful model of MPXV disease, utilized for testing of potential medical countermeasures. In this study, we used recombinant MPXV containing the firefly luciferase gene (luc) and in vivo imaging technology to characterize MPXV pathogenesis in the black-tailed prairie dog in real time. West African (WA) MPXV could be visualized using in vivo imaging in the nose, lymph nodes, intestines, heart, lung, kidneys, and liver as early as day 6 post infection (p.i.). By day 9 p.i., lesions became visible on the skin and in some cases in the spleen. After day 9 p.i., luminescent signal representing MPXV replication either increased, indicating a progression to what would be a fatal infection, or decreased as infection was resolved. Use of recombinant luc+ MPXV allowed for a greater understanding of how MPXV disseminates throughout the body in prairie dogs during the course of infection. This technology will be used to reduce the number of animals required in future pathogenesis studies as well as aid in determining the effectiveness of potential medical countermeasures.


Subject(s)
Monkeypox virus , Mpox (monkeypox)/veterinary , Sciuridae/virology , Animals , Disease Models, Animal , Female , Heart/virology , Intestines/virology , Kidney/virology , Liver/virology , Luminescent Measurements/veterinary , Lung/virology , Lymph Nodes/virology , Male , Mpox (monkeypox)/pathology , Mpox (monkeypox)/virology , Nose/virology
20.
Viruses ; 11(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31375015

ABSTRACT

Since the eradication of smallpox, there have been increases in poxvirus infections and the emergence of several novel poxviruses that can infect humans and domestic animals. In 2015, a novel poxvirus was isolated from a resident of Alaska. Diagnostic testing and limited sequence analysis suggested this isolate was a member of the Orthopoxvirus (OPXV) genus but was highly diverged from currently known species, including Akhmeta virus. Here, we present the complete 210,797 bp genome sequence of the Alaska poxvirus isolate, containing 206 predicted open reading frames. Phylogenetic analysis of the conserved central region of the genome suggested the Alaska isolate shares a common ancestor with Old World OPXVs and is diverged from New World OPXVs. We propose this isolate as a member of a new OPXV species, Alaskapox virus (AKPV). The AKPV genome contained host range and virulence genes typical of OPXVs but lacked homologs of C4L and B7R, and the hemagglutinin gene contained a unique 120 amino acid insertion. Seven predicted AKPV proteins were most similar to proteins in non-OPXV Murmansk or NY_014 poxviruses. Genomic analysis revealed evidence suggestive of recombination with Ectromelia virus in two putative regions that contain seven predicted coding sequences, including the A-type inclusion protein.


Subject(s)
Genome, Viral/genetics , Orthopoxvirus/genetics , Alaska , DNA, Viral/genetics , Genetic Variation , Humans , Open Reading Frames , Orthopoxvirus/classification , Phylogeny , Poxviridae Infections/virology , Recombination, Genetic , Sequence Analysis, DNA , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...