Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 146(20): 204903, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571342

ABSTRACT

We show that sterically interacting self-propelled disks in the presence of random pinning substrates exhibit transitions among a variety of different states. In particular, from a phase separated cluster state, the disks can spread out and homogeneously cover the substrate in what can be viewed as an example of an active matter wetting transition. We map the location of this transition as a function of activity, disk density, and substrate strength, and we also identify other phases including a cluster state, coexistence between a cluster and a labyrinth wetted phase, and a pinned liquid. Convenient measures of these phases include the cluster size, which dips at the wetting-dewetting transition, and the fraction of sixfold coordinated particles, which drops when dewetting occurs.

2.
Phys Rev E ; 95(3-1): 032606, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415221

ABSTRACT

Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions with the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.

3.
Rep Prog Phys ; 80(2): 026501, 2017 02.
Article in English | MEDLINE | ID: mdl-27997373

ABSTRACT

We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

4.
Article in English | MEDLINE | ID: mdl-25122329

ABSTRACT

We numerically examine the transport of active run-and-tumble particles with steric particle-particle interactions driven with a drift force over random disordered landscapes composed of fixed obstacles. For increasing run lengths, the net particle transport initially increases before reaching a maximum and decreasing at larger run lengths. The transport reduction is associated with the formation of cluster or living crystal states that become locally jammed or clogged by the obstacles. We also find that the system dynamically jams at lower particle densities when the run length is increased. Our results indicate that there is an optimal activity level for transport of run-and-tumble type active matter through quenched disorder and could be important for understanding biological transport in complex environments or for applications of active matter particles in random media.


Subject(s)
Models, Molecular , Motion , Biological Transport , Kinetics , Molecular Conformation
5.
J Phys Condens Matter ; 25(34): 345703, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23912884

ABSTRACT

Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in certain superconducting hybrid structures such as type-I/type-II layered systems as well as multi-band superconductors. In previous work it has been shown that such systems can form clump or phase separated states, but little is known about how they behave in the presence of pinning and under an applied drive. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead undergoes complete phase separation. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states, such as moving stripes that are aligned with the direction of drive or moving labyrinth or clump phases. We show that a signature of the exotic vortex interactions observable with transport measurements is a robust double peak feature in the differential resistance curves. Our results should be valuable for determining whether such vortex interactions are occurring in these systems and also for addressing the general problem of systems with competing interactions in the presence of random and periodic pinning.

6.
Article in English | MEDLINE | ID: mdl-23848673

ABSTRACT

We propose that a system of colloidal particles interacting with a honeycomb array of optical traps that each contain three wells can be used to realize a fully packed loop model. One of the phases in this system can be mapped to Baxter's three-coloring problem, offering an easily accessible physical realization of this problem. As a function of temperature and interaction strength, we find a series of phases, including long range ordered loop or stripe states, stripes with sliding symmetries, random packed loop states, and disordered states in which the loops break apart. Our geometry could be constructed using ion trap arrays, BEC vortices in optical traps, or magnetic vortices in nanostructured superconductors.


Subject(s)
Colloids/chemistry , Colloids/radiation effects , Crystallization/methods , Models, Chemical , Models, Molecular , Optical Tweezers , Computer Simulation , Light
7.
Phys Rev Lett ; 110(26): 267001, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848910

ABSTRACT

Conformal crystals are nonuniform structures created by a conformal transformation of regular two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array exhibit substantially stronger pinning effects over a much larger range of field than found for random or periodic pinning arrangements. The pinning enhancement is partially due to matching of the critical flux gradient with the pinning gradient, but the preservation of local ordering in the conformally transformed hexagonal lattice and the arching arrangement of the pinning also play crucial roles. Our results can be generalized to a wide class of gradient-driven interacting particle systems such as colloids on optical trap arrays.

8.
Article in English | MEDLINE | ID: mdl-24483447

ABSTRACT

When active matter particles such as swimming bacteria are placed in an asymmetric array of funnels, it has been shown that a ratchet effect can occur even in the absence of an external drive. Here we examine active ratchets for two-dimensional arrays of funnels or L shapes where there is also an externally applied dc drive or drift. We show that for certain conditions the ratchet effect can be strongly enhanced and it is possible to have conditions under which run-and-tumble particles with one run length move in the opposite direction from particles with a different run length. For the arrays of L shapes, we find that the application of a drift force can enhance a transverse rectification in the direction perpendicular to the drift. When particle-particle steric interactions are included, we find that the ratchet effects can be either enhanced or suppressed depending on barrier geometry, particle run length, and particle density.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051401, 2012 May.
Article in English | MEDLINE | ID: mdl-23004755

ABSTRACT

We examine the statics and dynamics of particles with repulsive Yukawa interactions in the presence of a two-dimensional triangular substrate for fillings of up to 12 particles per potential minimum. We term the ordered states Yukawa cluster crystals and show that they are distinct from the colloidal molecular crystal states found at low fillings. As a function of substrate and interaction strength at fixed particle density we find a series of novel crystalline states that we characterize using the structure factor. For fillings greater than four, shell and ring structures form at each potential minimum and can exhibit sample-wide orientational order. A disordered state can appear between ordered states as the substrate strength varies. Under an external drive, the onsets of different orderings produce clear changes in the critical depinning force, including a peak effect phenomenon that has generally only previously been observed in systems with random substrates. We also find a rich variety of dynamic ordering transitions that can be observed via changes in the structure factor and features in the velocity-force curves. The dynamical states encompass a variety of moving structures including one-dimensional stripes, smectic ordering, polycrystalline states, triangular lattices, and symmetry locking states. Despite the complexity of the system, we identify several generic features of the dynamical phase transitions which we map out in a series of phase diagrams. Our results have implications for the structure and depinning of colloids on periodic substrates, vortices in superconductors and Bose-Einstein condensates, Wigner crystals, and dusty plasmas.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056102, 2012 May.
Article in English | MEDLINE | ID: mdl-23004816

ABSTRACT

We demonstrate numerically bidirectional sorting of flocking particles interacting with an array of V-shaped asymmetric barriers. Each particle aligns with the average swimming direction of its neighbors according to the Vicsek model and experiences additional steric interactions as well as repulsion from the fixed barriers. We show that particles preferentially localize to one side of the barrier array over time and that the direction of this rectification can be reversed by adjusting the particle-particle exclusion radius or the noise term in the equations of motion. These results provide a conceptual basis for isolation and sorting of single-cell and multicellular organisms that move collectively according to flocking-type interaction rules.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 1): 021406, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23005762

ABSTRACT

Using computer simulations, we investigate hysteresis loops and return-point memory for artificial square and kagome spin ice systems by cycling an applied bias force and comparing microscopic effective spin configurations throughout the hysteresis cycle. Return-point memory loss is caused by motion of individual defects in kagome ice or of grain boundaries in square ice. In successive cycles, return-point memory is recovered rapidly in kagome ice. Memory is recovered more gradually in square ice due to the extended nature of the grain boundaries. Increasing the amount of quenched disorder increases the defect density but also enhances the return-point memory since the defects become trapped more easily.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061301, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23367926

ABSTRACT

We numerically study the effect of adding quenched disorder in the form of randomly placed pinning sites on jamming transitions in a disk packing that jams at a well-defined point J in the clean limit. Quenched disorder decreases the jamming density and introduces a depinning threshold. The onset of a finite threshold coincides with point J at the lowest pinning densities, but for higher pinning densities there is always a finite depinning threshold even well below jamming. We find that proximity to point J strongly affects the transport curves and noise fluctuations, and we observe a change from plastic behavior below jamming, where the system is highly heterogeneous, to elastic depinning above jamming. Many of the general features we find are related to other systems containing quenched disorder, including the peak effect observed in vortex systems.

13.
Eur Phys J E Soft Matter ; 34(10): 117, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22033615

ABSTRACT

We demonstrate that the fluctuation theorem can be used to characterize plastic flow phases in collectively interacting particle assemblies driven over quenched disorder when strong fluctuations and crackling noise with 1/f(α) character occur. By measuring the frequency of entropy-destroying trajectories and the diffusivity near the threshold for motion, we map out the different dynamic phases and demonstrate that the fluctuation theorem holds in the strongly fluctuating plastic flow regime which was previously shown to be chaotic. For different driving rates and disorder strength, we find that it is possible to define an effective temperature which decreases with increasing drive, as expected for this type of system. When the size of the pinning sites is large, we identify specific regimes where the fluctuation theorem holds only at long times due to an excess of negative entropy events that occur when particles undergo circular motions within the traps. We discuss how the fluctuation theorem could be applied to plastic flow in other driven nonthermal systems with quenched disorder such as superconducting vortices, magnetic domain walls, Coulomb glasses, and earthquake models.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011303, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21867160

ABSTRACT

We examine the jamming transition in a two-dimensional granular polymer system using compressional simulations. The jamming density Φ(c) decreases with increasing length of the granular chain due to the formation of loop structures, in excellent agreement with recent experiments. The jamming density can be further reduced in mixtures of granular chains and granular rings, also as observed in experiment. We show that the nature of the jamming in granular polymer systems has pronounced differences from the jamming behavior observed for polydisperse two-dimensional disk systems at point J. This result provides further evidence that there is more than one type of jamming transition.


Subject(s)
Physics/methods , Polymers/chemistry , Algorithms , Colloids/chemistry , Computer Simulation , Diffusion , Friction , Models, Theoretical , Pressure
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041501, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599163

ABSTRACT

A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we use numerical simulations to analyze how such stripe states depin and slide when interacting with a random substrate and with driving in different directions with respect to the orientation of the stripes. Depending on the strength and density of the substrate disorder, we find that there can be pronounced anisotropy in the transport produced by different dynamical flow phases. We also find a disorder-induced "peak effect" similar to that observed for superconducting vortex systems, which is marked by a transition from elastic depinning to a state where the stripe structure fragments or partially disorders at depinning. Under the sudden application of a driving force, we observe pronounced metastability effects similar to those found near the order-disorder transition associated with the peak effect regime for three-dimensional superconducting vortices. The characteristic transient time required for the system to reach a steady state diverges in the region where the flow changes from elastic to disordered. We also find that anisotropy of the flow persists in the presence of thermal disorder when thermally induced particle hopping along the stripes dominates. The thermal effects can wash out the effects of the quenched disorder, leading to a thermally induced stripe state. We map out the dynamical phase diagram for this system, and discuss how our results could be explored in electron liquid crystal systems, type-1.5 superconductors, and pattern-forming colloidal assemblies.

16.
Phys Rev Lett ; 106(6): 060603, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405453

ABSTRACT

We use molecular dynamics simulations to study the driven phases of particles such as vortices or colloids moving over a decagonal quasiperiodic substrate. In the regime where the pinned states have quasicrystalline ordering, the driven phases can order into moving square or smectic states, or into states with aligned rows of both square and triangular tiling which we term dynamically induced Archimedean-like tiling. We show that when the angle of the drive is varied with respect to the substrate, directional locking effects occur where the particle motion locks to certain angles. It is at these locking angles that the dynamically induced Archimedean tiling appears. We also demonstrate that the different dynamical orderings and locking phases show pronounced changes as a function of filling fraction.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041502, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230277

ABSTRACT

We numerically examine the properties of a two-dimensional system of particles which have competing long-range repulsive and short-range attractive interactions as a function of density and temperature. For increasing density, there are well-defined transitions between a low-density clump phase, an intermediate stripe phase, an anticlump phase, and a high-density uniform phase. To characterize the transitions between these phases we propose several measures which take into account the different length scales in the system. For increasing temperature, we find an intermediate phase that is liquidlike on the short length scale of interparticle spacing but solidlike on the larger length scale of the clump, stripe, or anticlump pattern. This intermediate phase persists over the widest temperature range in the stripe phase when the local particle lattice within an individual stripe melts well below the temperature at which the entire stripe structure breaks down, and is characterized by intrastripe diffusion of particles without interstripe diffusion. This is followed at higher temperatures by the onset of interstripe diffusion in an anisotropic diffusion phase and then by breakup of the stripe structure. We identify the transitions between these regimes through diffusion, heat capacity, and energy fluctuation measurements and find that within the intrastripe liquid regime, the excess entropy goes into disordering the particle arrangements within the stripe rather than affecting the stripe structure itself. The clump and anticlump phases also show multiple temperature-induced diffusive regimes which are not as pronounced as those of the stripe phase.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 1): 051306, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21230472

ABSTRACT

Using numerical simulations we examine the velocity fluctuations and velocity-force curve characteristics of a probe particle driven with constant force through a two-dimensional disordered assembly of disks which has a well-defined jamming point J at a density of ϕJ=0.843. As ϕ increases toward ϕJ, the average velocity of the probe particle decreases and the velocity fluctuations show an increasingly intermittent or avalanchelike behavior. When ϕ is within a few percent of the jamming density, the velocity distributions are exponential, while when ϕ is less than 1% away from jamming, the velocity distributions have a power-law character with exponents in agreement with recent experiments. The velocity power spectra exhibit a crossover from a Lorentzian form to a 1/f shape near jamming. We extract a correlation length exponent ν which is in good agreement with recent shear simulations. For ϕ>ϕJ, there is a critical threshold force F(c) that must be applied for the probe particle to move through the sample which increases with increasing ϕ. The velocity-force curves are linear below jamming, while at jamming they have a power-law form. The onset of the probe motion above ϕJ occurs via a local yielding of the particles around the probe particle which we term a local shear banding effect.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 022401, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792182

ABSTRACT

We show that colloidal molecular crystal states interacting with a periodic substrate, such as an optical-trap array, and a rotating external field can undergo a rapid pattern switching in which the orientation of the crystal changes. In some cases, a martensiticlike symmetry switching occurs. It is also possible to create a polarized state where the colloids in each substrate minimum develop a director field which smoothly rotates with the external drive, similar to liquid-crystal behavior. These results open the possibility for creating different types of devices using photonic band-gap materials, and should be generalizable to a variety of other condensed matter systems with multiple particle trapping.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 1): 061403, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658505

ABSTRACT

We show that a rich variety of nonequilibrium phases can be realized for interacting particles moving over a periodic substrate when the particles have effective internal orientational degrees of freedom. We specifically study driven colloidal molecular crystals where it has been established that n-merization produces effective orientational degrees of freedom. This system exhibits a polarization effect within the pinned phase, a remarkable variety of sliding phases, and has no single particle pinning regime. Similar dynamics should occur for other driven systems with effective orientational degrees of freedom such as sliding diatomic or higher-order states.

SELECTION OF CITATIONS
SEARCH DETAIL
...