Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598721

ABSTRACT

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES). The microcavity is patterned using focused ion beam etching to realize arbitrary lattice geometries, including defect sites on demand. The band structure of the lattice and the emergence of condensation are imaged using momentum-resolved spectroscopy. The introduction of defect sites is shown to lower the condensation threshold and result in the formation of a defect band in the condensation spectrum. The present approach allows us to study periodic, quasiperiodic, and disordered polariton condensate lattices at room temperature using a direct-write approach.

2.
J Phys Chem A ; 127(28): 5841-5850, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37427990

ABSTRACT

The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.

3.
J Am Chem Soc ; 144(43): 19981-19989, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36256621

ABSTRACT

Brightly fluorescent solid-state materials are highly desirable for bioimaging, optoelectronic applications, and energy harvesting. However, the close contact between π-systems most often leads to quenching. Recently, we developed small-molecule ionic isolation lattices (SMILES) that efficiently isolate fluorophores while ensuring very high densities of the dyes. Nevertheless, efficient Förster resonance energy transfer (FRET) energy migration in such dense systems is inevitable. While attractive for energy harvesting applications, FRET also significantly compromises quantum yields of fluorescent solids by funneling the excitation energy to dark trap states. Here, we investigate the underlying property of FRET and exploit it to our favor by intentionally introducing fluorescent dopants into SMILES materials, acting as FRET acceptors with favorable photophysical properties. This doping is shown to outcompete energy migration to dark trap states while also ruling out reabsorption effects in dense SMILES materials, resulting in universal fluorescent solid-state materials (thin films, powders, and crystals) with superior properties. These include emission quantum yields reaching as high as 50-65%, programmable fluorescence lifetimes with mono-exponential decay, and independent selection of absorption and emission maxima. The volume normalized brightness of these FRET-based SMILES now reach values up to 32,200 M-1 cm-1 nm-3 and can deliver freely tunable spectroscopic properties for the fabrication of super-bright advanced optical materials. It is found that SMILES prohibit PET quenching between donor and acceptor dyes that is observed for non-SMILES mixtures of the same dyes. This allows a very broad selection of donor and acceptor dyes for use in FRET SMILES.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Ions
4.
J Am Chem Soc ; 142(28): 12167-12180, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32539380

ABSTRACT

Fluorophores are powerful tools for the study of chemistry, biology, and physics. However, fluorescence is severely impaired when concentrations climb above 5 µM as a result of effects like self-absorption and chromatic shifts in the emitted light. Herein, we report the creation of a charge-transfer (CT) fluorophore and the discovery that its emission color seen at low concentrations is unchanged even at 5 mM, some 3 orders of magnitude beyond typical limits. The fluorophore is composed of a triphenylamine-substituted cyanostar macrocycle, and it exhibits a remarkable Stokes shift of 15 000 cm-1 to generate emission at 633 nm. Crucial to the performance of this fluorophore is the observation that its emission spectrum shows near-zero overlap with the absorption band at 325 nm. We propose that reducing the spectral overlap to zero is a key to achieving full fluorescence across all concentrations. The triphenylamine donor and five cyanostilbene acceptor units of the macrocycle generate an emissive CT state. Unlike closely related donor-acceptor control compounds showing dual emission, the cyanostar framework inhibited emission from the second state to create a zero-overlap fluorophore. We demonstrated the use of emission spectroscopy for characterization of host-guest complexation at millimolar concentrations, which are typically the exclusive domain of NMR spectroscopy. The binding of the PF6- anion generates a 2:1 sandwich complex with blue-shifted emission. Distinct from twisted intramolecular charge-transfer (TICT) states, experiment-supported density functional theory shows a 67° twist inside an acceptor unit in the CT state instead of displaying a twist between the donor and acceptor; it is TICT-like. Inspired by the findings, we uncovered similar concentration-independent behavior from a control compound, strongly suggesting this behavior may be latent to other large Stokes-shift fluorophores. We discuss strategies capable of generating zero-overlap fluorophores to enable accurate fluorescence characterization of processes across all practical concentrations.


Subject(s)
Fluorescent Dyes/analysis , Density Functional Theory , Molecular Structure , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...