Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Cells ; 11(19)2022 09 26.
Article in English | MEDLINE | ID: mdl-36230966

ABSTRACT

In nature, fungal endophytes often have facultative endohyphal bacteria (FEB). Can a model plant pathogenic fungus have them, and does it affect their phenotype? We constructed a growth system/microcosm to allow an F. graminearum isolate to grow through natural soil and then re-isolated it on a gentamicin-containing medium, allowing endohyphal growth of bacteria while killing other bacteria. F. graminearum PH-1 labelled with a His1mCherry gene staining the fungal nuclei fluorescent red was used to confirm the re-isolation of the fungus. Most new re-isolates contained about 10 16SrRNA genes per fungal mCherry gene determined by qPCR. The F. graminearum + FEB holobiont isolates containing the bacteria were sub-cultured several times, and their bacterial contents were stable. Sequencing the bacterial 16SrRNA gene from several Fg-FEB holobiont isolates revealed endophytic bacteria known to be capable of nitrogen fixation. We tested the pathogenicity of one common Fg-FEB holobiont association, F. graminearum + Stenatrophomonas maltophilia, and found increased pathogenicity. The 16SrRNA gene load per fungal His1mCherry gene inside the wheat stayed the same as previously found in vitro. Finally, strong evidence was found for Fg-S. maltophilia symbiotic nitrogen fixation benefitting the fungus.


Subject(s)
Soil , Triticum , Bacteria/genetics , Fusarium , Gentamicins , Plant Diseases/microbiology , Triticum/microbiology
2.
Microbiol Spectr ; 10(6): e0304222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36255296

ABSTRACT

The rice pathogen Magnaporthe oryzae causes severe losses to rice production. Previous studies have shown that the protein kinase MoCK2 is essential for pathogenesis, and this ubiquitous eukaryotic protein kinase might affect several processes in the fungus that are needed for infection. To better understand which cellular processes are affected by MoCK2 activity, we performed a detailed transcriptome sequencing analysis of deletions of the MoCK2 b1 and b2 components in relation to the background strain Ku80 and connected this analysis with the abundance of substrates for proteins in a previous pulldown of the essential CKa subunit of CK2 to estimate the effects on proteins directly interacting with CK2. The results showed that MoCK2 seriously affected carbohydrate metabolism, fatty acid metabolism, amino acid metabolism, and the related transporters and reduced acetyl-CoA production. CK2 phosphorylation can affect the folding of proteins and especially the effective formation of protein complexes by intrinsically disordered or mitochondrial import by destabilizing soluble alpha helices. The upregulated genes found in the pulldown of the b1 and b2 mutants indicate that proteins directly interacting with CK2 are compensatorily upregulated depending on their pulldown. A similar correlation was found for mitochondrial proteins. Taken together, the classes of proteins and the changes in regulation in the b1 and b2 mutants suggest that CK2 has a central role in mitochondrial metabolism, secondary metabolism, and reactive oxygen species (ROS) resistance, in addition to its previously suggested role in the formation of new ribosomes, all of which are processes central to efficient nonself responses as innate immunity. IMPORTANCE The protein kinase CK2 is highly expressed and essential for plants, animals, and fungi, affecting fatty acid-related metabolism. In addition, it directly affects the import of essential mitochondrial proteins into mitochondria. These effects mean that CK2 is essential for lipid metabolism and mitochondrial function and, as shown previously, is crucial for making new translation machinery proteins. Taken together, our new results combined with previously reported results indicate that CK2 is an essential protein necessary for the capacities to launch efficient innate immunity responses and withstand the negative effects of such responses necessary for general resistance against invading bacteria and viruses as well as to interact with plants, withstand plant immunity responses, and kill plant cells.


Subject(s)
Casein Kinase II , Magnaporthe , Casein Kinase II/genetics , Casein Kinase II/metabolism , Acetyl Coenzyme A/metabolism , Magnaporthe/genetics , Magnaporthe/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Gene Expression Profiling , Mitochondria/metabolism , Fatty Acids/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
Mol Plant Pathol ; 23(8): 1200-1213, 2022 08.
Article in English | MEDLINE | ID: mdl-35430769

ABSTRACT

The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M. oryzae Early Infection-induced Transcription Factor genes (MOEITF1 and MOEITF2) and analysed their roles in this process. Target gene deletion and mutant phenotype analysis showed that the mutants Δmoeitf1 and Δmoeitf2 were only defective for infection growth but not for vegetative growth, asexual/sexual sporulation, conidial germination, and appressoria formation. Gene expression analysis of 30 putative effectors revealed that most effector genes were down-regulated in mutants, implying a potential regulation by the transcription factors. Artificial overexpression of two severely down-regulated effectors, T1REP and T2REP, in the mutants partially restored the pathogenicity of Δmoeitf1 and Δmoeitf2, respectively, indicating that these are directly regulated. Yeast one-hybrid assay and electrophoretic mobility shift assay indicated that Moeitf1 specifically bound the T1REP promoter and Moeitf2 specifically bound the T2REP promoter. Both T1REP and T2REP were predicted to be secreted during infection, and the mutants of T2REP were severely reduced in pathogenicity. Our results indicate crucial roles for the fungal-specific Moeitf1 and Moeitf2 transcription factors in regulating an essential step in M. oryzae early establishment after penetrating rice epidermal cells, highlighting these as possible targets for disease control.


Subject(s)
Magnaporthe , Oryza , Ascomycota , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Oryza/microbiology , Plant Diseases/microbiology , Spores, Fungal/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Microbiol Res ; 259: 127011, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35339938

ABSTRACT

BACKGROUND: Trichoderma reesei has extraordinary potential for high-level protein production at large scales, and it need to be further explored through genetic engineering tools to obtain a thorough understanding of its cellular physiology. Understanding the genetic factors involved in the intrinsic regulatory network is crucial; without this information, there would be restrictions in expressing genes of interest. Past and present studies are concentrated on the application and expansion of novel expression systems using synthetic biology concepts. These approaches involve either using previously established promoters that are strong or genetically engineered promoters. Genomic and transcriptomic methods have also been employed to isolate strong promoters and expression systems such as light-inducible expression systems, copper-inducible expression systems, L-methionine inducible promoters, and Tet-On expression system etc. AIMS OF REVIEW: In this review, we will highlight various research endeavors related to tunable and constitutive promoters; the role of different promoters in homologous and heterologous protein expression; the identification of innovative promoters, and strategies that may be beneficial for future research aimed at improving and enhancing protein expression in T. reesei. KEY SCIENTIFIC CONCEPTS OF THE REVIEW: The characterization of new promoters and implementation of novel expression systems that will result in a significant extension of the molecular toolbox that is accessible for the genetic engineering of innovative strains of T. reesei. Genetically engineered strong inducible promoters such as Pcbh1 through replacement of transcriptional repressors (cre1, ace1) with transcriptional activators (xyr1, ace2, ace3, hap2/3/5) and synthetic expression systems can result in elevated production of endoglucanases (EGLs), ß-glucosidases (BGLs), and cellobiohydrolases (CBHs). Strong constitutive promoters such as Pcdna1 can be converted into genetically engineered synthetic hybrid promoters by integrating the activation region of strong inducible promoters, which can allow the induction and expression of cellulases even on repressing media. More efforts are necessary to identify innovative promoters and novel expression strategies for the enhanced expression of desirable proteins at industrial scales.


Subject(s)
Cellulase , Trichoderma , Cellulase/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genetic Engineering , Hypocreales , Transcription Factors/genetics , Trichoderma/genetics , Trichoderma/metabolism
6.
Mol Plant Pathol ; 22(9): 1159-1164, 2021 09.
Article in English | MEDLINE | ID: mdl-34117700

ABSTRACT

Polar growth during appressorium formation is vital for the penetration peg formation in the rice blast fungus, Magnaporthe oryzae. Previous research has shown that the Sln1-septin-exocyst complex, localized at the base of the appressorium in contact with the leaf surface, forms a ring structure that influences growth polarity and affects penetration peg formation, and is necessary for pathogenicity. Our previous research showed CK2 proteins assemble another ring structure positioned perpendicular to the Sln1-septin-exocyst complex. Our research showed that the CK2 ring needs to become correctly assembled for penetration peg function and subsequent plant infection. In the present study, we found that the ring structures of CK2 are absent in the appressorium of ΔMoSep3 septin deletion mutants lacking the septin ring of the Sln1-septin-exocyst complex. Sln1 affects the septin proteins that recruit the exocyst complex that localizes as another ring at the appressorium's bottom. Destruction of the exocyst complex by mutation also causes incorrect localization of the CK2 ring structure. In conclusion, CK2 probably takes part in reestablishing the appressorium' spolarity growth necessary for penetration peg formation. We can also conclude that the correct localization and assembly of one or more CK2 ring structures in the appressorium depend on the initial assembly of the Sln1-septin-exocyst complex two rings at the base of the appressorium.


Subject(s)
Magnaporthe , Oryza , Ascomycota , Fungal Proteins/genetics , Plant Diseases
7.
Appl Environ Microbiol ; 86(21)2020 10 15.
Article in English | MEDLINE | ID: mdl-32826219

ABSTRACT

Pseudomonas fluorescens In5 synthesizes the antifungal cyclic lipopeptides (CLPs) nunamycin and nunapeptin, which are similar in structure and genetic organization to the pseudomonas-derived phytotoxins syringomycin and syringopeptin. Regulation of syringomycin and syringopeptin is dependent on the two-component global regulatory system GacS-GacA and the SalA, SyrF, and SyrG transcription factors, which activate syringomycin synthesis in response to plant signal molecules. Previously, we demonstrated that a specific transcription factor, NunF, positively regulates the synthesis of nunamycin and nunapeptin in P. fluorescens In5 and that the nunF gene is upregulated by fungal-associated molecules. This study focused on further unravelling the complex regulation governing CLP synthesis in P. fluorescens In5. Promoter fusions were used to show that the specific activator NunF is dependent on the global regulator of secondary metabolism GacA and is regulated by fungal-associated molecules and low temperatures. In contrast, GacA is stimulated by plant signal molecules leading to the hypothesis that P. fluorescens is a hyphosphere-associated bacterium carrying transcription factor genes that respond to signals indicating the presence of fungi and oomycetes. Based on these findings, we present a model for how synthesis of nunamycin and nunapeptin is regulated by fungal- and oomycete-associated molecules.IMPORTANCE Cyclic lipopeptide (CLP) synthesis gene clusters in pseudomonads display a high degree of synteny, and the structures of the peptides synthesized are very similar. Accordingly, the genomic island encoding the synthesis of syringomycin and syringopeptin in P. syringae pv. syringae closely resembles that of P. fluorescens In5, which contains genes coding for synthesis of the antifungal and anti-oomycete peptides nunamycin and nunapeptin, respectively. However, the regulation of syringomycin and syringopeptin synthesis is different from that of nunamycin and nunapeptin synthesis. While CLP synthesis in the plant pathogen P. syringae pv. syringae is induced by plant signal molecules, such compounds do not significantly influence synthesis of nunamycin and nunapeptin in P. fluorescens In5. Instead, fungal-associated molecules positively regulate antifungal peptide synthesis in P. fluorescens In5, while the synthesis of the global regulator GacA in P. fluorescens In5 is positively regulated by plant signal molecules but not fungal-associated molecules.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Bacterial Proteins/biosynthesis , Biological Control Agents/metabolism , Lipopeptides/biosynthesis , Pseudomonas fluorescens/metabolism , Promoter Regions, Genetic , Secondary Metabolism
8.
Appl Environ Microbiol ; 86(2)2020 01 07.
Article in English | MEDLINE | ID: mdl-31676471

ABSTRACT

CK2, a serine/threonine (Ser/Thr) kinase present in eukaryotic cells, is known to have a vast number of substrates. We have recently shown that it localizes to nuclei and at pores between hyphal compartments in Magnaporthe oryzae We performed a pulldown proteomics analysis of M. oryzae CK2 catalytic subunit MoCKa to detect interacting proteins. The MoCKa pulldown was enriched for septum and nucleolus proteins and intrinsically disordered proteins (IDPs) containing a CK2 phosphorylation motif that is proposed to destabilize and unfold α-helices. This points to a function for CK2 phosphorylation and corresponding phosphatase dephosphorylation in the formation of functional protein-protein aggregates and protein-RNA/DNA binding. To test this as widely as possible, we used secondary data downloaded from databases from a large range of M. oryzae experiments, as well as data for a relatively closely related plant-pathogenic fungus, Fusarium graminearum We found that CKa expression was strongly positively correlated with Ser/Thr phosphatases, as well as with disaggregases (HSP104, YDJ1, and SSA1) and an autophagy-indicating protein (ATG8). The latter points to increased protein aggregate formation at high levels of CKa expression. Our results suggest a general role for CK2 in chaperoning aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA.IMPORTANCE CK2 is a eukaryotic conserved kinase enzyme complex that phosphorylates proteins. CK2 is known to phosphorylate a large number of proteins and is constitutively active, and thus a "normal" role for a kinase in a signaling cascade might not be the case for CK2. Previous results on localization and indications from the literature point to a function for CK2 phosphorylation in shaping and folding of proteins, especially intrinsically disordered proteins, which constitute about 30% of eukaryotic proteins. We used pulldown of interacting proteins and data downloaded from a large range of transcriptomic experiments in M. oryzae and complemented these with data downloaded from a large range of transcriptomic experiments in Fusarium graminearum We found support for a general role for CK2 in aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA-interactions that could explain the importance of CK2 in eukaryotic cell function and disease.


Subject(s)
Casein Kinase II/genetics , Fungal Proteins/genetics , Intrinsically Disordered Proteins/genetics , Magnaporthe/genetics , Molecular Chaperones/genetics , Casein Kinase II/metabolism , Catalytic Domain , Fungal Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Magnaporthe/metabolism , Molecular Chaperones/metabolism , Proteomics
9.
Article in English | MEDLINE | ID: mdl-31198578

ABSTRACT

BACKGROUND: Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics." RESULTS: We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed Arabidopsis seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi. CONCLUSIONS: This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.

10.
Article in English | MEDLINE | ID: mdl-31058100

ABSTRACT

Magnaporthe oryzae (Mo) is a model pathogen causing rice blast resulting in yield and economic losses world-wide. CK2 is a constitutively active, serine/threonine kinase in eukaryotes, having a wide array of known substrates, and involved in many cellular processes. We investigated the localization and role of MoCK2 during growth and infection. BLAST search for MoCK2 components and targeted deletion of subunits was combined with protein-GFP fusions to investigate localization. We found one CKa and two CKb subunits of the CK2 holoenzyme. Deletion of the catalytic subunit CKa was not possible and might indicate that such deletions are lethal. The CKb subunits could be deleted but they were both necessary for normal growth and pathogenicity. Localization studies showed that the CK2 holoenzyme needed to be intact for normal localization at septal pores and at appressorium penetration pores. Nuclear localization of CKa was however not dependent on the intact CK2 holoenzyme. In appressoria, CK2 formed a large ring perpendicular to the penetration pore and the ring formation was dependent on the presence of all CK2 subunits. The effects on growth and pathogenicity of deletion of the b subunits combined with the localization indicate that CK2 can have important regulatory functions not only in the nucleus/nucleolus but also at fungal specific structures such as septa and appressorial pores.


Subject(s)
Cell Nucleolus/chemistry , Cell Nucleus/chemistry , Magnaporthe/enzymology , Magnaporthe/growth & development , Oryza/microbiology , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/analysis , Gene Deletion , Magnaporthe/pathogenicity , Protein Serine-Threonine Kinases/genetics , Virulence , Virulence Factors/analysis , Virulence Factors/genetics
11.
Bio Protoc ; 9(12): e3264, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-33654784

ABSTRACT

Genomics, transcriptomics and metabolomics are powerful technologies for studying microbial interactions. The main drawback of these methods is the requirement for destructive sampling. We have established an alternative but complementary technique based on a microplate system combined with promoter fusions for visualizing gene expression in space and time. Here we provide a protocol for measuring spatial and temporal gene expression of a bacterial reporter strain interacting with a fungus on a solid surface.

12.
New Phytol ; 219(2): 654-671, 2018 07.
Article in English | MEDLINE | ID: mdl-29676464

ABSTRACT

Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum.


Subject(s)
Cell Polarity , Endosomes/metabolism , Fungal Proteins/metabolism , Fusarium/growth & development , Fusarium/pathogenicity , Protein Multimerization , Sorting Nexins/metabolism , Actin Cytoskeleton/metabolism , Fungal Proteins/chemistry , Fusarium/genetics , Fusarium/metabolism , GTP Phosphohydrolases/metabolism , Gene Deletion , Genes, Fungal , Microtubules/metabolism , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Domains , Protein Transport , Spores, Fungal/metabolism , Structure-Activity Relationship , Transport Vesicles/metabolism , Virulence
13.
FEMS Microbiol Rev ; 42(3): 335-352, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29471481

ABSTRACT

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Microbial Interactions/physiology , Animals , Ecology
14.
Curr Genet ; 64(1): 285-301, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28918485

ABSTRACT

In eukaryotic organisms, the 5-oxoprolinase is one of the six key enzymes in the γ-glutamyl cycle that is involved in the biosynthetic pathway of glutathione (GSH, an antioxidative tripeptide counteracting the oxidative stress). To date, little is known about the biological functions of the 5-oxoprolinase in filamentous phytopathogenic fungi. In this study, we investigated the 5-oxoprolinase in Fusarium graminearum for the first time. In F. graminearum, two paralogous genes (FgOXP1 and FgOXP2) were identified to encode the 5-oxoprolinase while only one homologous gene encoding the 5-oxoprolinase could be found in other filamentous phytopathogenic fungi or Saccharomyces cerevisiae. Deletion of FgOXP1 or FgOXP2 in F. graminearum led to significant defects in its virulence on wheat. This is likely caused by an observed decreased deoxynivalenol (DON, a mycotoxin) production in the gene deletion mutant strains as DON is one of the best characterized virulence factors of F. graminearum. The FgOXP2 deletion mutant strains were also defective in conidiation and sexual reproduction while the FgOXP1 deletion mutant strains were normal for those phenotypes. Double deletion of FgOXP1 and FgOXP2 led to more severe defects in conidiation, DON production and virulence on plants, suggesting that both FgOXP1 and FgOXP2 play a role in fungal development and plant colonization. Although transformation of MoOXP1into ΔFgoxp1 was able to complement ΔFgoxp1, transformation of MoOXP1 into ΔFgoxp2 failed to restore its defects in sexual development, DON production and pathogenicity. Taken together, these results suggest that FgOXP1 and FgOXP2 are likely to have been functionally diversified and play significant roles in fungal development and full virulence in F. graminearum.


Subject(s)
Fusarium/physiology , Pyroglutamate Hydrolase/metabolism , Spores, Fungal , Trichothecenes/biosynthesis , Biological Evolution , Cell Wall/genetics , Cell Wall/metabolism , Computational Biology/methods , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/pathogenicity , Genetic Complementation Test , Mutation , Phylogeny , Protein Transport , Pyroglutamate Hydrolase/genetics , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
15.
J Microbiol Methods ; 144: 173-176, 2018 01.
Article in English | MEDLINE | ID: mdl-29203144

ABSTRACT

Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. Here we describe a dual-fluorescence reporter system carrying the red fluorescent marker mCherry and the blue fluorescent protein EBFP2 enabling the simultaneous analysis of two promoters in broad-host range autofluorescent Gram-negative bacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Reporter/genetics , Gram-Negative Bacteria/genetics , Host Specificity , Luminescent Proteins/genetics , DNA, Bacterial/genetics , Genes, Bacterial/genetics , Genes, Essential/genetics , Plasmids/genetics , Promoter Regions, Genetic
16.
PLoS One ; 12(10): e0187116, 2017.
Article in English | MEDLINE | ID: mdl-29077733

ABSTRACT

It is important to identify and recover bacteria associating with fungi under natural soil conditions to enable eco-physiological studies, and to facilitate the use of bacterial-fungal consortia in environmental biotechnology. We have developed a novel type of baiting microcosm, where fungal hyphae interact with bacteria under close-to-natural soil conditions; an advantage compared to model systems that determine fungal influences on bacterial communities in laboratory media. In the current approach, the hyphae are placed on a solid support, which enables the recovery of hyphae with associated bacteria in contrast to model systems that compare bulk soil and mycosphere soil. We used the baiting microcosm approach to determine, for the first time, the composition of the bacterial community associating in the soil with hyphae of the phosphate-solubilizer, Penicillium bilaii. By applying a cultivation-independent 16S rRNA gene-targeted amplicon sequencing approach, we found a hypha-associated bacterial community with low diversity compared to the bulk soil community and exhibiting massive dominance of Burkholderia OTUs. Burkholderia is known be abundant in soil environments affected by fungi, but the discovery of this massive dominance among bacteria firmly associating with hyphae in soil is novel and made possible by the current bait approach.


Subject(s)
Genes, Fungal , Penicillium/isolation & purification , Soil Microbiology , Penicillium/genetics
17.
Int J Mol Sci ; 18(8)2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28757549

ABSTRACT

Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.


Subject(s)
Multiprotein Complexes/metabolism , Sorting Nexins/metabolism , Vesicular Transport Proteins/metabolism , Animals , Autophagy , Endosomes/metabolism , Humans , Protein Transport , trans-Golgi Network/metabolism
18.
BMC Res Notes ; 10(1): 376, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28807055

ABSTRACT

BACKGROUND: Few studies to date report the transcriptional response of biocontrol bacteria toward phytopathogens. In order to gain insights into the potential mechanism underlying the antagonism of the antimicrobial producing strain P. fluorescens In5 against the phytopathogens Rhizoctonia solani and Pythium aphanidermatum, global RNA sequencing was performed. METHODS: Differential gene expression profiling of P. fluorescens In5 in response to either R. solani or P. aphanidermatum was investigated using transcriptome sequencing (RNA-seq). Total RNA was isolated from single bacterial cultures of P. fluorescens In5 or bacterial cultures in dual-culture for 48 h with each pathogen in biological triplicates. RNA-seq libraries were constructed following a default Illumina stranded RNA protocol including rRNA depletion and were sequenced 2 × 100 bases on Illumina HiSeq generating approximately 10 million reads per sample. RESULTS: No significant changes in global gene expression were recorded during dual-culture of P. fluorescens In5 with any of the two pathogens but rather each pathogen appeared to induce expression of a specific set of genes. A particularly strong transcriptional response to R. solani was observed and notably several genes possibly associated with secondary metabolite detoxification and metabolism were highly upregulated in response to the fungus. A total of 23 genes were significantly upregulated and seven genes were significantly downregulated with at least respectively a threefold change in expression level in response to R. solani compared to the no fungus control. In contrast, only one gene was significantly upregulated over threefold and three transcripts were significantly downregulated over threefold in response to P. aphanidermatum. Genes known to be involved in synthesis of secondary metabolites, e.g. non-ribosomal synthetases and hydrogen cyanide were not differentially expressed at the time points studied. CONCLUSION: This study demonstrates that genes possibly involved in metabolite detoxification are highly upregulated in P. fluorescens In5 when co-cultured with plant pathogens and in particular the fungus R. solani. This highlights the importance of studying microbe-microbe interactions to gain a better understanding of how different systems function in vitro and ultimately in natural systems where biocontrol agents can be used for the sustainable management of plant diseases.


Subject(s)
Antibiosis/genetics , Gene Expression Profiling/methods , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/physiology , Rhizoctonia/physiology , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Plant Diseases/microbiology , Pythium/physiology
19.
Microbiologyopen ; 6(6)2017 12.
Article in English | MEDLINE | ID: mdl-28782279

ABSTRACT

Nunamycin and nunapeptin are two antimicrobial cyclic lipopeptides (CLPs) produced by Pseudomonas fluorescens In5 and synthesized by nonribosomal synthetases (NRPS) located on two gene clusters designated the nun-nup regulon. Organization of the regulon is similar to clusters found in other CLP-producing pseudomonads except for the border regions where putative LuxR-type regulators are located. This study focuses on understanding the regulatory role of the LuxR-type-encoding gene nunF in CLP production of P. fluorescens In5. Functional analysis of nunF coupled with liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that CLP biosynthesis is regulated by nunF. Quantitative real-time PCR analysis indicated that transcription of the NRPS genes catalyzing CLP production is strongly reduced when nunF is mutated indicating that nunF is part of the nun-nup regulon. Swarming and biofilm formation was reduced in a nunF knockout mutant suggesting that these CLPs may also play a role in these phenomena as observed in other pseudomonads. Fusion of the nunF promoter region to mCherry showed that nunF is strongly upregulated in response to carbon sources indicating the presence of a fungus suggesting that environmental elicitors may also influence nunF expression which upon activation regulates nunamycin and nunapeptin production required for the growth inhibition of phytopathogens.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Gene Expression Regulation, Bacterial , Lipopeptides/biosynthesis , Pseudomonas fluorescens/metabolism , Transcription Factors/metabolism , Anti-Bacterial Agents/chemistry , Lipopeptides/chemistry , Pseudomonas fluorescens/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics
20.
Sci Rep ; 7(1): 281, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28325928

ABSTRACT

Here, we report the development of a microplate reader-based system for visualizing gene expression dynamics in living bacterial cells in response to a fungus in space and real-time. A bacterium expressing the red fluorescent protein mCherry fused to the promoter region of a regulator gene nunF indicating activation of an antifungal secondary metabolite gene cluster was used as a reporter system. Time-lapse image recordings of the reporter red signal and a green signal from fluorescent metabolites combined with microbial growth measurements showed that nunF-regulated gene transcription is switched on when the bacterium enters the deceleration growth phase and upon physical encounter with fungal hyphae. This novel technique enables real-time live imaging of samples by time-series multi-channel automatic recordings using a microplate reader as both an incubator and image recorder of general use to researchers. The technique can aid in deciding when to destructively sample for other methods e.g. transcriptomics and mass spectrometry imaging to study gene expression and metabolites exchanged during the interaction.


Subject(s)
Gene Expression Profiling , Microbial Interactions , Microbiological Techniques/methods , Artificial Gene Fusion , Genes, Reporter , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Promoter Regions, Genetic , Spatio-Temporal Analysis , Time-Lapse Imaging , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...