Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 16: 874, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26510639

ABSTRACT

BACKGROUND: Francisella infection attenuates immune cell infiltration and expression of selected pro-inflammatory cytokines in response to endogenous LPS, suggesting the bacteria is actively antagonizing at least some part of the response to Toll-like receptor 4 (TLR4) engagement. The ability of different Francisella strains to inhibit the ability of E. coli LPS to induce a pulmonary inflammatory response, as measured by gene expression profiling, was examined to define the scope of modulation and identify of inflammatory genes/pathways that are specifically antagonized by a virulent F. tularensis infection. RESULTS: Prior aerosol exposure to F. tularensis subsp. tularensis, but not the live attenuated strain (LVS) of F. tularensis subsp. holarctica or F. novicida, significantly antagonized the transcriptional response in the lungs of infected mice exposed to aerosolized E. coli LPS. The response to E. coli LPS was not completely inhibited, suggesting that the bacteria is targeting further downstream of the TLR4 molecule. Analysis of the promotors of LPS-responsive genes that were perturbed by Type A Francisella infection identified candidate transcription factors that were potentially modulated by the bacteria, including multiple members of the forkhead transcription factor family (FoxA1, Foxa2, FoxD1, Foxd3, Foxf2, FoxI1, Fox03, Foxq1), IRF1, CEBPA, and Mef2. The annotated functional roles of the affected genes suggested that virulent Francisella infection suppressed cellular processes including mRNA processing, antiviral responses, intracellular trafficking, and regulation of the actin cytoskeleton. Surprisingly, despite the broad overall suppression of LPS-induced genes by virulent Francisella, and contrary to what was anticipated from prior studies, Type A Francisella did not inhibit the expression of the majority of LPS-induced cytokines, nor the expression of many classic annotated inflammatory genes. CONCLUSIONS: Collectively, this analysis demonstrates clear differences in the ability of different Francisella strains to modulate TLR4 signaling and identifies genes/pathways that are specifically targeted by virulent Type A Francisella.


Subject(s)
Francisella tularensis/immunology , Lipopolysaccharides/immunology , Toll-Like Receptor 4/agonists , Tularemia/immunology , Aerosols , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
2.
PLoS One ; 8(5): e62412, 2013.
Article in English | MEDLINE | ID: mdl-23690939

ABSTRACT

Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-ß and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.


Subject(s)
Francisella tularensis/genetics , Francisella tularensis/physiology , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/immunology , Pneumonia/immunology , Pneumonia/microbiology , Animals , Female , Francisella tularensis/pathogenicity , Gene Expression Profiling , Lung/immunology , Lung/metabolism , Lung/microbiology , Lymphocytes/immunology , Male , Mice , Mice, Inbred BALB C , Pneumonia/genetics , Time Factors , Transcription, Genetic , Tularemia/genetics , Tularemia/immunology
3.
J Cardiovasc Pharmacol ; 57(4): 495-504, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21297495

ABSTRACT

Dual inhibition of angiotensin-converting enzyme (ACE) and neprilysin (NEP) by drugs such as omapatrilat produces superior antihypertensive efficacy but cause high incidence of angioedema. We examined whether dual inhibition of angiotensin AT1 receptor (ARB) and NEP (ARB-NEPI, valsartan-candoxatril) provides similar efficacy to omapatrilat without the risk of angioedema. Activity of test compounds at the targets was assayed using fluorescence-based enzyme assays (ACE, NEP, aminopeptidase P) or competition binding assays (AT1). Target engagement in vivo (ACE, AT1, and NEP) was quantified by measuring inhibition of angiotensin-pressor responses and potentiation of atrial natriuretic peptide-induced urinary cyclic guanosine monophosphate (cGMP) output in rats. Tracheal plasma extravasation (TPE) was used as a surrogate to assess propensity of compounds to promote upper airway angioedema. Antihypertensive efficacy in renin-dependent and -independent states was measured in spontaneously hypertensive rats and deoxycorticosterone acetate salt hypertensive rats, respectively. Administration of omapatrilat and coadministration of valsartan and candoxatril blocked angiotensin induced vasopressor responses and potentiated atrial natriuretic peptide-induced increase in urinary cGMP output. In spontaneously hypertensive rats, valsartan, omapatrilat, and valsartan-candoxatril combination all produced reduction in blood pressure to a similar extent, whereas candoxatril was ineffective. In deoxycorticosterone acetate rats, omapatrilat, candoxatril, and valsartan-candoxatril combination but not valsartan produced reduction in blood pressure. Antihypertensive doses of omapatrilat produced robust increases in TPE; by contrast, valsartan, candoxatril, or their combination did not increase TPE. Pretreatment with icatibant, a bradykinin B2 antagonist, abolished omapatrilat-induced TPE but not its antihypertensive effects. On the background of NEP inhibition, suppression of the renin-angiotensin system through ARB and ACE inhibition shows a similar antihypertensive efficacy but exerts differential effects on bradykinin metabolism and TPE indicative of reduced risk of angioedema. Thus, dual AT1 receptor blockade and NEP inhibition is potentially an attractive approach to retain the excellent antihypertensive effects of omapatrilat but with a superior safety profile.


Subject(s)
Antihypertensive Agents/pharmacology , Neprilysin/antagonists & inhibitors , Pyridines/pharmacology , Receptor, Angiotensin, Type 1/drug effects , Thiazepines/pharmacology , Angioedema/chemically induced , Animals , Antihypertensive Agents/toxicity , Blood Pressure/drug effects , Drug Therapy, Combination , Indans/administration & dosage , Indans/pharmacology , Indans/toxicity , Male , Propionates/administration & dosage , Propionates/pharmacology , Propionates/toxicity , Pyridines/toxicity , Rats , Rats, Sprague-Dawley , Renin-Angiotensin System/drug effects , Tetrazoles/administration & dosage , Tetrazoles/pharmacology , Tetrazoles/toxicity , Thiazepines/toxicity , Valine/administration & dosage , Valine/analogs & derivatives , Valine/pharmacology , Valine/toxicity , Valsartan
SELECTION OF CITATIONS
SEARCH DETAIL
...