Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
APMIS ; 132(2): 81-93, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38031200

ABSTRACT

Urinary tract infections (UTIs) are among the most common bacterial infections affecting millions worldwide. The increasing emergence of antibiotic-resistant bacteria has become a serious concern in managing UTIs. Therefore, there is a growing interest in using bacteriophages as an alternative or adjunct therapy for UTIs. Bacteriophages are viruses that infect and kill bacteria, making them a promising tool for treating UTIs caused by antibiotic-resistant bacteria. This article provides a quick outlook on using bacteriophages to treat UTIs. We summarize the current understanding of the biology of bacteriophages, the challenges associated with developing phage-based therapies, and the promising results of several case reports and clinical trials. We also highlight the potential of phage therapy as a valuable tool in the fight against antibiotic-resistant UTIs. This quick outlook on a bacteriophage-based approach for treating UTIs offers a timely and informative summary of the current research in this field.


Subject(s)
Bacterial Infections , Bacteriophages , Urinary Tract Infections , Humans , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/microbiology , Bacterial Infections/microbiology , Bacteria
2.
Microorganisms ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37764196

ABSTRACT

Phage-antibiotic combination-based protocols are presently under heightened investigation. This paradigm extends to engagements with bacterial biofilms, necessitating novel computational approaches to comprehensively characterize and optimize the outcomes achievable via these combinations. This study aimed to explore the Response Surface Methodology (RSM) in optimizing the antibiofilm activity of bacteriophage-antibiotic combinations. We employ a combination of antibiotics (gentamicin, meropenem, amikacin, ceftazidime, fosfomycin, imipenem, and colistin) alongside the bacteriophage vB_AbaP_AGC01 to combat Acinetobacter baumannii biofilm. Based on the conducted biofilm challenge assays analyzed using the RSM, the optimal points of antibiofilm activity efficacy were effectively selected by applying this methodology, enabling the quantifiable mathematical representations. Subsequent optimization showed the synergistic potential of the anti-biofilm that arises when antibiotics are judiciously combined with the AGC01 bacteriophage, reducing biofilm biomass by up to 80% depending on the antibiotic used. The data suggest that the phage-imipenem combination demonstrates the highest efficacy, with an 88.74% reduction. Notably, the lower concentrations characterized by a high maximum reduction in biofilm biomass were observed in the phage-amikacin combination at cA = 0.00195 and cP = 0.38 as the option that required minimum resources. It is worth noting that only gentamicin antagonism between the phage and the antibiotic was detected.

3.
Front Microbiol ; 14: 1320345, 2023.
Article in English | MEDLINE | ID: mdl-38249486

ABSTRACT

Bacteria and fungi tend to coexist within biofilms instead of in planktonic states. Usually, such communities include cross-kingdom microorganisms, which make them harder to remove from abiotic surfaces or infection sites. Additionally, the produced biofilm matrix protects embedded microorganisms from antibiotics, disinfectants, or the host immune system. Therefore, classic therapies based on antibiotics might be ineffective, especially when multidrug-resistant bacteria are causative factors. The complexities surrounding the eradication of biofilms from diverse surfaces and the human body have spurred the exploration of alternative therapeutic modalities. Among these options, bacteriophages and their enzymatic counterparts have emerged as promising candidates, either employed independently or in synergy with antibiotics and other agents. Phages are natural bacteria killers because of mechanisms of action that differ from antibiotics, phages might answer worldwide problems with bacterial infections. In this review, we report the attempts to use bacteriophages in combating polymicrobial biofilms in in vitro studies, using different models, including the therapeutical use of phages. In addition, we sum up the advantages, disadvantages, and perspectives of phage therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...