Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(1): e0247823, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38038458

ABSTRACT

IMPORTANCE: Our results demonstrate increased extracellular ammonium release in the endophyte plant growth-promoting bacterium Gluconacetobacter diazotrophicus. Strains were constructed in a manner that leaves no antibiotic markers behind, such that these strains contain no transgenes. Levels of ammonium achieved by cultures of modified G. diazotrophicus strains reached concentrations of approximately 18 mM ammonium, while wild-type G. diazotrophicus remained much lower (below 50 µM). These findings demonstrate a strong potential for further improving the biofertilizer potential of this important microbe.


Subject(s)
Endophytes , Gluconacetobacter , Endophytes/genetics , Gene Editing , Gluconacetobacter/genetics
2.
Appl Environ Microbiol ; 88(23): e0124122, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36374093

ABSTRACT

Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.


Subject(s)
Gluconacetobacter , Symbiosis , Gluconacetobacter/genetics , Nitrogen Fixation/genetics , Nitrogen
3.
Plant Biotechnol J ; 17(1): 132-140, 2019 01.
Article in English | MEDLINE | ID: mdl-29797460

ABSTRACT

The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Gene Editing , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Solanum lycopersicum/genetics , Alleles , Gene Editing/methods , Genes, Plant , Heterozygote , Homozygote , Solanum lycopersicum/growth & development , Peptides , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Nat Chem Biol ; 13(5): 479-485, 2017 05.
Article in English | MEDLINE | ID: mdl-28244988

ABSTRACT

Plant development requires coordination among complex signaling networks to enhance the plant's adaptation to changing environments. DELLAs, transcription regulators originally identified as repressors of phytohormone gibberellin signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we found that DELLA is mono-O-fucosylated by the novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3) and PIF4. Moreover, spy mutants displayed elevated responses to gibberellin and brassinosteroid, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding may have broader importance because SPY orthologs are conserved in prokaryotes and eukaryotes, thus suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fucosyltransferases/metabolism , Repressor Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Fucosyltransferases/genetics , Repressor Proteins/genetics
6.
Plant Physiol ; 173(2): 1453-1462, 2017 02.
Article in English | MEDLINE | ID: mdl-27999086

ABSTRACT

The plant hormone indole-3-acetic acid (IAA or auxin) mediates the elongation growth of shoot tissues by promoting cell expansion. According to the acid growth theory proposed in the 1970s, auxin activates plasma membrane H+-ATPases (PM H+-ATPases) to facilitate cell expansion by both loosening the cell wall through acidification and promoting solute uptake. Mechanistically, however, this process is poorly understood. Recent findings in Arabidopsis (Arabidopsis thaliana) have demonstrated that auxin-induced SMALL AUXIN UP RNA (SAUR) genes promote elongation growth and play a key role in PM H+-ATPase activation by inhibiting PP2C.D family protein phosphatases. Here, we extend these findings by demonstrating that SAUR proteins also inhibit tomato PP2C.D family phosphatases and that AtSAUR19 overexpression in tomato (Solanum lycopersicum) confers the same suite of phenotypes as previously reported for Arabidopsis. Furthermore, we employ a custom image-based method for measuring hypocotyl segment elongation with high resolution and a method for measuring cell wall mechanical properties, to add mechanistic details to the emerging description of auxin-mediated cell expansion. We find that constitutive expression of GFP-AtSAUR19 bypasses the normal requirement of auxin for elongation growth by increasing the mechanical extensibility of excised hypocotyl segments. In contrast, hypocotyl segments overexpressing a PP2C.D phosphatase are specifically impaired in auxin-mediated elongation. The time courses of auxin-induced SAUR expression and auxin-dependent elongation growth were closely correlated. These findings indicate that induction of SAUR expression is sufficient to elicit auxin-mediated expansion growth by activating PM H+-ATPases to facilitate apoplast acidification and mechanical wall loosening.


Subject(s)
Arabidopsis Proteins/genetics , Hypocotyl/growth & development , Indoleacetic Acids/metabolism , Solanum lycopersicum/growth & development , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypocotyl/genetics , Hypocotyl/metabolism , Solanum lycopersicum/genetics , Plants, Genetically Modified , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Proton-Translocating ATPases/metabolism
8.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26773002

ABSTRACT

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , N-Acetylglucosaminyltransferases/metabolism , Signal Transduction/physiology , Acylation , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gibberellins/metabolism , Mutation , N-Acetylglucosaminyltransferases/genetics , Protein Binding
9.
Essays Biochem ; 58: 49-60, 2015.
Article in English | MEDLINE | ID: mdl-26374886

ABSTRACT

Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling.


Subject(s)
Gibberellins/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Homeostasis , Plant Proteins/physiology , Trans-Activators/physiology
10.
Plant Cell ; 27(6): 1579-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26036254

ABSTRACT

Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant pro(ΔGRAS), all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not pro(ΔGRAS), elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in pro(ΔGRAS) and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in pro(ΔGRAS) but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated pro(ΔGRAS) leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent.


Subject(s)
Gibberellins/physiology , Plant Growth Regulators/physiology , Plant Proteins/physiology , Solanum lycopersicum/physiology , Abscisic Acid/physiology , Feedback, Physiological , Genes, Plant/physiology , Solanum lycopersicum/genetics , Mutation , Plant Growth Regulators/genetics , Plant Proteins/genetics , Seeds/growth & development , Seeds/physiology , Transcriptome
11.
J Bacteriol ; 197(2): 354-61, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25384478

ABSTRACT

The posttranslational addition of a single O-linked ß-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes.


Subject(s)
N-Acetylglucosaminyltransferases/metabolism , Synechococcus/enzymology , Synechococcus/metabolism , N-Acetylglucosaminyltransferases/genetics , Synechococcus/genetics
13.
Virology ; 442(2): 122-31, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23639873

ABSTRACT

O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus.


Subject(s)
Acetylglucosamine/metabolism , Capsid Proteins/metabolism , Plum Pox Virus/pathogenicity , Protein Processing, Post-Translational , Arabidopsis/virology , Capsid Proteins/chemistry , DNA Mutational Analysis , Plant Diseases/virology , Plum Pox Virus/chemistry , Prunus/virology , Nicotiana/virology
14.
Plant Physiol ; 161(1): 455-64, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23144189

ABSTRACT

Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-ß-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated.


Subject(s)
Acetylglucosamine/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glycoside Hydrolases/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Asparagine/metabolism , Chromatography, Affinity/methods , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Enzyme Activation , Glycoside Hydrolases/genetics , Glycosylation , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Molecular Conformation , Polysaccharides/metabolism , Protein Folding , Recombinant Proteins/metabolism , Serine/metabolism , Threonine/metabolism
15.
Amino Acids ; 40(3): 869-76, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20676902

ABSTRACT

The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked ß-N-acetylglucosamine (O-GlcNAc). In Arabidopsis thaliana this modification is made by an O-GlcNAc transferase named SECRET AGENT (SEC). Modification of PPV-CP by SEC is hypothesized to have a direct role in the infection process, because virus titer and rate of spread are reduced in SEC mutants. Previous studies used deletion mapping and site-directed mutagenesis to identify four O-GlcNAc sites on the capsid protein that are modified by Escherichia coli-expressed SEC. The infection process was not affected when two of these sites were mutated suggesting that O-GlcNAcylation of these sites does not have a significant role in the infection process or that a subset of the modifications is sufficient. Since it is possible that the mutational mapping approach missed or incorrectly identified O-GlcNAc sites, the modifications produced by E. coli-expressed SEC were characterized using mass spectrometry. O-GlcNAcylated peptides were enzymatically tagged with galactose, the products were enriched on immobilized Ricinus communis agglutinin I and sequenced by electron transfer dissociation (ETD) mass spectrometry. Five O-GlcNAc sites on PPV-CP were identified. Two of these sites were not identified in by the previous mutational mapping. In addition, one site previously predicted by mutation mapping was not detected, but modification of this site was not supported when the mutation mapping was repeated. This study suggests that mapping modification sites by ETD mass spectrometry is more comprehensive and accurate than mutational mapping.


Subject(s)
Acetylglucosamine/metabolism , Arabidopsis Proteins/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , N-Acetylglucosaminyltransferases/metabolism , Plum Pox Virus/metabolism , Amino Acid Sequence , Arabidopsis Proteins/genetics , Biocatalysis , Capsid Proteins/genetics , Glycosylation , Mass Spectrometry , Molecular Sequence Data , N-Acetylglucosaminyltransferases/genetics , Peptide Mapping , Plum Pox Virus/chemistry , Plum Pox Virus/genetics
16.
Biochim Biophys Acta ; 1800(2): 49-56, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19961900

ABSTRACT

The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.


Subject(s)
Acetylglucosamine/metabolism , Evolution, Molecular , N-Acetylglucosaminyltransferases/metabolism , Plants/metabolism , Amino Acid Sequence , Arabidopsis Proteins/physiology , N-Acetylglucosaminyltransferases/physiology , Phylogeny , Plants/genetics , Protein Processing, Post-Translational , Protein Structure, Tertiary , Repetitive Sequences, Amino Acid/genetics , Repressor Proteins/physiology , Sequence Alignment
17.
Plant Dis ; 92(5): 725-729, 2008 May.
Article in English | MEDLINE | ID: mdl-30769585

ABSTRACT

A disease of penstemon (Penstemon digitalis) occurring in commercial nurseries in Minnesota in 2004 to 2006 and characterized by red foliar ringspots, leaf deformation, and plant stunting was found to be caused by a strain of Turnip vein-clearing virus (TVCV) that was named Penstemon ringspot virus (PenRSV). This is the first report of a viral disease of penstemon. The genome organization of PenRSV was similar to that of the crucifer-infecting tobamoviruses. The nucleotide sequence of PenRSV was almost identical (99%) to that of TVCV, but the two viruses differed importantly in host range and symptoms induced. The only sequence difference between PenRSV and TVCV occurred at the 3' end of open reading frame I, where the amino acid sequence FRDSNL in TVCV is replaced by FRGQQL in PenRSV. The experimental host range of PenRSV included species in the families Brassicaceae (Cruciferae), Cactaceae, Cucurbitaceae, Leguminosae, Malvaceae, and Solanaceae. This virus poses a potential threat to commercial nursery and bedding plant production because of its wide host range and because it will escape detection by immunoenzymatic screening procedures for tobamoviruses based on use of antibodies to Tobacco mosaic virus (TMV).

18.
Plant Physiol ; 143(2): 987-1000, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17142481

ABSTRACT

The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-delta17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-delta17 phenotype but does not reduce rga-delta17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Gibberellins/metabolism , Repressor Proteins/metabolism , Alleles , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis Proteins/genetics , Fertility/physiology , Flowers/metabolism , Molecular Sequence Data , Mutation , Repressor Proteins/genetics , Signal Transduction , Time Factors
19.
FEBS Lett ; 580(25): 5822-8, 2006 Oct 30.
Article in English | MEDLINE | ID: mdl-17014851

ABSTRACT

A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.


Subject(s)
Capsid Proteins/chemistry , Plum Pox Virus/chemistry , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Binding Sites , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/genetics , Glycosylation , Molecular Sequence Data , Mutagenesis, Site-Directed , Plant Diseases/virology , Plum Pox Virus/genetics , Plum Pox Virus/pathogenicity , Protein Processing, Post-Translational , Prunus/virology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Threonine/chemistry , Nicotiana/virology
20.
FEBS Lett ; 580(25): 5829-35, 2006 Oct 30.
Article in English | MEDLINE | ID: mdl-17027982

ABSTRACT

The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked GlcNAc (O-GlcNAc). While Arabidopsis has two O-GlcNAc transferases, SECRET AGENT (SEC) and SPINDLY (SPY), previous work suggests that SEC modifies PPV-CP and that the modification plays a role in the infection process. Here, we show that when co-expressed in Escherichia coli SEC modifies PPV-CP. Deletion mapping and site-directed mutagenesis identified three threonine and a serine located near the N-terminus of PPV-CP that are modified by SEC. Two of these threonines have recently been shown to be modified in virus from plants suggesting that SEC has the same specificity in plants and E. coli.


Subject(s)
Arabidopsis Proteins/metabolism , Capsid Proteins/metabolism , N-Acetylglucosaminyltransferases/metabolism , Plum Pox Virus/metabolism , Amino Acid Substitution , Arabidopsis/enzymology , Base Sequence , Binding Sites , Capsid Proteins/chemistry , Capsid Proteins/genetics , DNA, Viral/genetics , Glycosylation , Mutagenesis, Site-Directed , Plum Pox Virus/genetics , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Serine/chemistry , Threonine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...