Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Risk Anal ; 40(9): 1706-1722, 2020 09.
Article in English | MEDLINE | ID: mdl-32602232

ABSTRACT

Model averaging for dichotomous dose-response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose-response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.


Subject(s)
Bayes Theorem , Risk Assessment , Uncertainty , Dose-Response Relationship, Drug , Isocyanates/administration & dosage , Nitrosamines/administration & dosage
2.
Bioinformatics ; 35(10): 1780-1782, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30329029

ABSTRACT

SUMMARY: A new version (version 2) of the genomic dose-response analysis software, BMDExpress, has been created. The software addresses the increasing use of transcriptomic dose-response data in toxicology, drug design, risk assessment and translational research. In this new version, we have implemented additional statistical filtering options (e.g. Williams' trend test), curve fitting models, Linux and Macintosh compatibility and support for additional transcriptomic platforms with up-to-date gene annotations. Furthermore, we have implemented extensive data visualizations, on-the-fly data filtering, and a batch-wise analysis workflow. We have also significantly re-engineered the code base to reflect contemporary software engineering practices and streamline future development. The first version of BMDExpress was developed in 2007 to meet an unmet demand for easy-to-use transcriptomic dose-response analysis software. Since its original release, however, transcriptomic platforms, technologies, pathway annotations and quantitative methods for data analysis have undergone a large change necessitating a significant re-development of BMDExpress. To that end, as of 2016, the National Toxicology Program assumed stewardship of BMDExpress. The result is a modernized and updated BMDExpress 2 that addresses the needs of the growing toxicogenomics user community. AVAILABILITY AND IMPLEMENTATION: BMDExpress 2 is available at https://github.com/auerbachs/BMDExpress-2/releases. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Transcriptome , Workflow , Genome , Molecular Sequence Annotation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...