Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39203186

ABSTRACT

This study aimed to compare the color changes in two different orthodontic clear aligner systems after submersion in various beverages for 14 days. The tested aligner systems were Taglus Premium made of polyethylene terephthalate glycol (the TAG group) and CA® Prodin+ made of a transparent copolyester and a thermoplastic elastomer (the PRO group). A total of 56 samples were firstly divided into two groups according to the tested system-TAG and PRO. Each group was subsequently divided in four subgroups according to immersion solution: A-artificial saliva, B-cola, C-coffee, D-red wine. Color measurements were performed on Days 1, 7 and 14 using a portable colorimeter and the CIE L*a*b* system. The obtained results showed significant color changes in both materials when exposed to coffee and red wine (p > 0.05). Samples in the PRO group showed a greater susceptibility to discoloration (higher ΔE values) when compared to the TAG group after submersion in cola (p = 0.025), coffee (p = 0.005) and red wine (p = 0.041) solutions. Statistical analysis revealed that all of the color parameters ΔL*, Δa*, Δb* and ΔE of both tested materials were affected by submersion in coffee solution for 14 days. In conclusion, the CA® Pro+ aligner system is more prone to staining compared to the Taglus material after submersion for 14 days in cola, coffee and red wine solutions. Submersion for 14 days in coffee solution alters all of the color parameters (ΔL, Δa, Δb and ΔE) of both tested aligner materials.

2.
Dent J (Basel) ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38668015

ABSTRACT

Orthodontic mini-implants are devices used for anchorage in various orthodontic treatments. We conducted a pilot study which aimed to observe preliminary trends regarding the impact of heat treatment on the elastic modulus of Ti6Al4V alloy and stainless steel 316L mini-implants. The initial phase involved testing the impact of heat treatment on the mechanical properties of Ti6Al4V alloy and stainless steel 316L mini-implants. MATERIAL AND METHODS: Ten self-drilling mini-implants sourced from two distinct manufacturers (Jeil Medical Corporation® and Leone®) with dimensions of 2.0 mm diameter and 10 mm length were tested. They were separated into two material groups: Ti6Al4V and 316L. Using the CETRUMT-2 microtribometer equipment, indentation testing was conducted employing a diamond-tipped Rockwell penetrator at a constant force of 4.5 N. RESULTS: Slight differences were observed in the elastic modulus of the Ti6Al4V alloy (103.99 GPa) and stainless steel 316L (203.20 GPa) compared to natural bone. The higher elastic moduli of these materials indicate that they are stiffer, which could potentially lead to stress-shielding phenomena and bone resorption. Heat treatment resulted in significant changes in mechanical properties, including elastic modulus reductions of approximately 26.14% for Ti6Al4V and 24.82% for 316L, impacting their performance in orthodontic applications. CONCLUSION: Understanding the effects of heat treatment on these alloys is crucial for optimizing their biomechanical compatibility and longevity in orthodontic treatment. To fully evaluate the effects of heat treatment on mini-implants and to refine their design and efficacy in clinical practice, further research is needed.

SELECTION OF CITATIONS
SEARCH DETAIL