Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Mater Chem C Mater ; 12(24): 8759-8776, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38912177

ABSTRACT

Metal-organic frameworks (MOFs) have gathered significant interest due to their tunable porosity leading to diverse potential applications. In this study, we investigate the incorporation of the fluorosolvatochromic dye 2-butyl-5,6-dimethoxyisoindoline-1,3-dione ([double bond, length as m-dash]Phth) into various MOF structures as a means to assess the polarity of these porous materials. As a purely inorganic compound, zeolite Y was tested for comparison. The fluorosolvatochromic behavior of Phth, which manifests as changes in its emission spectra in response to solvent polarity, provides a sensitive probe for characterizing the local environment within the MOF pores. Through systematic variation of the MOF frameworks, we demonstrate the feasibility of using (fluoro-)solvatochromic dyes as probes for assessing the polarity gradients within MOF structures. Additionally, the fluorosolvatochromic response was studied as a function of loading amount. Our findings not only offer insights into the interplay between MOF architecture and guest molecule interactions but also present a promising approach for the rational design and classification of porous materials based on their polarity properties.

2.
ACS Appl Mater Interfaces ; 16(12): 14984-14994, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483310

ABSTRACT

To achieve more stable and efficient metal halide perovskite devices, optimization of charge transport materials and their interfaces with perovskites is crucial. ZnO on paper would make an ideal electron transport layer in perovskite devices. This metal oxide has a large bandgap, making it transparent to visible light; it can be easily n-type doped, has a decent electron mobility, and is thought to be chemically relatively inert. However, in combination with perovskites, ZnO has turned out to be a source of instability, rapidly degrading the performance of devices. In this work, we provide a comprehensive experimental and computational study of the interaction between the most common organic perovskite precursors and the surface of ZnO, with the aim of understanding the observed instability. Using X-ray photoelectron spectroscopy, we find a complete degradation of the precursors in contact with ZnO and the formation of volatile species as well as new surface bonds. Our computational work reveals that different pristine and defected surface terminations of ZnO facilitate the decomposition of the perovskite precursor molecules, mainly through deprotonation, making the deposition of the latter on those surfaces impossible without the use of passivation.

3.
Dalton Trans ; 53(9): 4278-4290, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345091

ABSTRACT

Oxyfluorides come in many different structures and are highly adaptable in composition, not least because of their mixed-anionic nature. Slight changes, unless specifically looked for, can easily go unnoticed. In this paper, we present two oxyfluorides, K3Mo2O5.6F3.4 and K3V2O3.3F5.7, synthesized under high-pressure/high-temperature conditions, and demonstrate the importance of careful analysis of composition, oxidation state and O/F anion distribution for an accurate description of oxyfluorides. Their crystal structures were determined by single-crystal X-ray diffraction and the transition metal cation valences analyzed by X-ray photoelectron spectroscopy (XPS). The O/F anion ratio was calculated using the principle of charge neutrality and the local distribution within the crystallographic framework was studied using bond valence (BV) and charge distribution (CHARDI) calculations. Madelung Part of Lattice Energy (MAPLE) calculations and magnetic measurements provide insight into phase stability and corroborate the mixed-valent nature of the compounds.

4.
Nanoscale ; 15(24): 10319-10329, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37282835

ABSTRACT

The ability to control the structural properties of molecular layers is a key for the design and preparation of organic electronic devices. While microscopic growth studies of planar, rigid and symmetric π-conjugated molecules have been performed to a larger extent, this is less the case for elongated donor-acceptor molecules with flexible functional groups, which are particularly interesting due to their high dipole moments. Prototypical molecules of this type are merocyanines (MCs), which have been widely studied for the use as efficient absorbers in organic photodetectors. For maximized light absorption and optimized electronic properties the molecular arrangement which is affected by the initial assembly of the films at the supporting substrate interface is decisive. The situation deserves special attention, when the surface nucleation leads to so far not known and bulk-unlike aggregates. Here, we report on the growth of a typical MC (HB238) on the Ag(100) surface, serving as the substrate. In the energetically preferred phase, the molecules adsorb in a face-on geometry and organize in tetramers with a circular dipole arrangement. The tetramers further self-order in large, enantiopure domains with a periodicity that is commensurate to the Ag(100) surface, likely due to a specific bonding of the thiophene and thiazol rings to the Ag surface. Using scanning tunneling microscopy (STM) in combination with low energy electron diffraction we derive the detailed structure of the tetramers. The center of the tetramer, which is most prominent in STM images, consists of four upward pointing tert-butyl groups from four molecules. It is encircled by a ring of four hydrogen bonds between terminal CN-groups and thiophene rings on neighboring molecules. In parallel, the surface interaction modifies the intramolecular dipole, which is revealed from photoemission spectroscopy. Hence, this example shows how the surface template effect leads to an unforeseen molecular organization which is considerably more complex compared to that in the bulk phases of HB238, which feature paired dipoles.


Subject(s)
Microscopy, Scanning Tunneling , Surface Properties , Molecular Conformation , Microscopy, Scanning Tunneling/methods , Photoelectron Spectroscopy
5.
Article in English | MEDLINE | ID: mdl-36758226

ABSTRACT

Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of the SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol % SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1% efficient flexible four-terminal all-perovskite tandem cells.

6.
Chemistry ; 28(22): e202200004, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35262987

ABSTRACT

(SO4 )-rich silicate analogue borosulfates are able to stabilise cationic cluster-like and chain-like aggregates. Single crystals of [Au3 Cl4 ][B(S2 O7 )2 ] and [Au2 Cl4 ][B(S2 O7 )2 ](SO3 ) were obtained by solvothermal reaction with SO3 , and the electronic properties were investigated by means of density functional theory-based calculations. [Au3 Cl4 ][B(S2 O7 )2 ] exhibits a cluster-like cation, and the cationic gold-chloride strands in [Au2 Cl4 ][B(S2 O7 )2 ](SO3 ) are found to resemble one-dimensional metallic wires. This is confirmed by polarisation microscopy.

7.
ACS Appl Mater Interfaces ; 14(30): 34208-34219, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35107986

ABSTRACT

Despite the rapid progress in perovskite solar cells, their commercialization is still hindered by issues regarding long-term stability, which can be strongly affected by metal oxide-based charge extraction layers next to the perovskite material. With MoO3 being one of the most successful hole transport layers in organic photovoltaics, the disastrous results of its combination with perovskite films came as a surprise but was soon attributed to severe chemical instability at the MoO3/perovskite interface. To discover the atomistic origin of this instability, we combine density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) measurements to investigate the interaction of MoO3 with the perovskite precursors MAI, MABr, FAI, and FABr. From DFT calculations we suggest a scenario that is based upon oxygen vacancies playing a key role in interface degradation reactions. Not only do these vacancies promote decomposition reactions of perovskite precursors, but they also constitute the reaction centers for redox reactions leading to oxidation of the halides and reduction of Mo. Specifically iodides are proposed to be reactive, while bromides do not significantly affect the oxide. XPS measurements reveal a severe reduction of Mo and a loss of the halide species when the oxide is interfaced with I-containing precursors, which is consistent with the proposed scenario. In line with the latter, experimentally observed effects are much less pronounced in case of Br-containing precursors. We further find that the reactivity of the MoO3 substrate can be moderated by reducing the number of oxygen vacancies through a UV/ozone treatment, though it cannot be fully eliminated.

8.
Small Methods ; 5(11): e2100725, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34927958

ABSTRACT

The rapid development of all inorganic metal perovskite (CsPbX3 , X represents halogen) materials holds great promise for top-cells in tandem junctions due to their glorious thermal stability and continuous adjustable band gap in a wide range. Due to the presence of defects, the power conversion efficiency (PCE) of CsPbX3 perovskite solar cells (PSCs) is still substantially below the Shockley-Queisser (SQ) limit. Therefore, it is imperative to have an in-depth understanding of the defects in PSCs, thus to evaluate their impact on device performances and to develop corresponding strategies to manipulate defects in PSCs for further promoting their photoelectric properties. In this review, the latest progress in defect passivation in the CsPbX3 PSCs field is summarized. Starting from the effect of non-radiative recombination on open circuit voltage (Voc ) losses, the defect physics, tolerance, self-healing, and the effect of defects on the photovoltaic properties are discussed. Some techniques to identify defects are compared based on quantitative and qualitative analysis. Then, passivation manipulation is discussed in detail, the defect passivation mechanisms are proposed, and the passivation agents in CsPbX3 thin films are classified. Finally, directions for future research about defect manipulation that will push the field to progress forward are outlined.

9.
ACS Energy Lett ; 6(11): 3916-3923, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34805526

ABSTRACT

Tremendous efforts have been dedicated toward minimizing the open-circuit voltage deficits on perovskite solar cells (PSCs), and the fill factors are still relatively low. This hinders their further application in large scalable modules. Herein, we employ a newly designed ammonium salt, cyclohexylethylammonium iodide (CEAI), for interfacial engineering between the perovskite and hole-transporting layer (HTL), which enhanced the fill factor to 82.6% and consequent PCE of 23.57% on the target device. This can be associated with a reduction of the trap-assisted recombination rate at the 3D perovskite surface, via formation of a 2D perovskite interlayer. Remarkably, the property of the 2D perovskite interlayer along with the cyclohexylethyl group introduced by CEAI treatment also determines a pronounced enhancement in the surface hydrophobicity, leading to an outstanding stability of over 96% remaining efficiency of the passivated devices under maximum power point tracking with one sun illumination under N2 atmosphere at room temperature after 1500 h.

10.
Materials (Basel) ; 14(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832243

ABSTRACT

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.

11.
Organometallics ; 40(15): 2736-2749, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34393320

ABSTRACT

In this contribution, we revisit the neglected and forgotten cationic, air-stable, 18-valence electron, heteroleptic sandwich complex (cycloheptatrienyl)(cyclopentadienyl)manganese, which was reported independently by Fischer and by Pauson about 50 years ago. Using advanced high-power LED photochemical synthesis, an expedient rapid access to the parent complex and to functionalized derivatives with alkyl, carboxymethyl, bromo, and amino substituents was developed. A thorough study of these "tromancenium" salts by a range of spectroscopic techniques (1H/13C/55Mn-NMR, IR, UV-vis, HRMS, XRD, XPS, EPR), cyclic voltammetry (CV), and quantum chemical calculations (DFT) shows that these manganese sandwich complexes are unique metallocenes with quite different chemical and physical properties in comparison to those of isoelectronic cobaltocenium salts or (cycloheptatrienyl)(cyclopentadienyl) sandwich complexes of the early transition metals. Electrochemically, all tromancenium ions undergo a chemically partially reversible oxidation and a chemically irreversible reduction at half-wave or peak potentials that respond to the substituents at the Cp deck. As exemplarily shown for the parent tromancenium ion, the product generated during the irreversible reduction process reverts at least partially to the starting material upon reoxidation. Quantum-chemical calculations of the parent tromancenium salt indicate that metal-ligand bonding is distinctly weaker for the cycloheptatrienyl ligand in comparison to that of the cyclopentadienyl ligand. Both the HOMO and the LUMO are metal and cycloheptatrienyl-ligand centered, indicating that chemical reactions will occur either metal-based or at the seven-membered ring, but not on the cyclopentadienyl ligand.

12.
Langmuir ; 37(25): 7834-7842, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34143632

ABSTRACT

Understanding the interactions between the single components of hybrid systems is essential to drive the development of advanced functional materials. A prerequisite for this is the systematic variation of the building blocks of such compounds. Focusing on spiropyran@metal-organic framework (MOF) composite materials with noncovalently attached spiropyran dyes, both the host scaffold and the dye molecules can be systematically tuned. In this work, a broad substitution pattern was applied to systematically elucidate the characteristics of the resulting hybrid materials as a function of the supplemental substitution on spiropyran. The newly developed 12 composites exhibit substitution and host-dependent optical characteristics, which are particularly affected by the substitution of the 6'-position on the chromene ring. Through the favorable combination of the MOF host's polarity and an adequate strength of the spiropyran's indolinedonor-chromeneacceptor pair, reversible conversion between photoisomers is efficiently accomplished, especially for nitro-substituted spiropyrans inside MIL-68(In).

13.
Dalton Trans ; 50(12): 4311-4322, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33690770

ABSTRACT

New tetradentate phenolate O^N^N^S thiosemicarbazone (TSC) ligands and their Ni(ii), Pd(ii) and Pt(ii) complexes were studied. The diamagnetic and square planar configured orange or red complexes show reversible reductive electrochemistry and in part reversible oxidative electrochemistry at very moderate potentials. DFT calculations show essentially pyridyl-imine centred lowest unoccupied molecular orbitals (LUMO) while the highest occupied molecular orbitals (HOMO) receive contributions from the phenolate moiety, the metal d orbitals and the TSC thiolate atom in keeping with UV-vis spectroelectrochemistry. DFT calculations in conjunction with IR spectra showed details of the molecular structures, the UV-vis absorptions were modelled through TD-DFT calculation with very high accuracy. UPS is fully consistent with UV-vis absorption and TD-DFT calculated data and shows decreasing HOMO-LUMO gaps along the series Pd > Pt > Ni.

14.
ACS Appl Mater Interfaces ; 13(3): 4203-4210, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33435668

ABSTRACT

We investigate all-inorganic perovskite CsPbxSn1-xBr3 thin films to determine the variations in the band gap and electronic structure associated with the Pb/Sn ratio. We observe that the band gap can be tuned between 1.86 eV (x = 0) and 2.37 eV (x = 1). Intriguingly, this change is nonlinear in x, with a bowing parameter of 0.9 eV; furthermore, a slight band gap narrowing is found for low Pb content (minimum x ∼ 0.3). The wide tunability of the band gap makes CsPbxSn1-xBr3 a promising material, e.g., for a wide-gap subcell in tandem applications or for color-tunable light-emitting diodes. Employing photoelectron spectroscopy, we show that the valence band varies with the Pb/Sn ratio, while the conduction band is barely affected.

15.
Photochem Photobiol Sci ; 19(12): 1730-1740, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33242033

ABSTRACT

The incorporation of photochromic dyes into porous metal-organic frameworks (MOFs) is an attractive way to transfer the photochromic properties of the dye to a solid crystalline material. In this work, the well-known P-type chromophore 1,2-bis[2-methylbenzo[b]thiophen-3-yl]-3,3,4,4,5,5-hexafluoro-1-cyclopentene (DTE) is embedded in three different MOFs, namely MOF-5, MIL-68(In), and MIL-68(Ga). The successful filling of the MOF pores with the DTE guest was proven by X-ray powder diffraction, while the amount of the embedded guest molecules was investigated by X-ray photoelectron spectroscopy (XPS), liquid-state NMR and thermal analysis (DSC/TGA). The measurements reveal an unexpectedly low filling of the MOF pores with the DTE guest (e.g. in MOF-5 only every fifth MOF pore is filled with a guest molecule) as well as an inhomogeneous loading throughout the material. Reflection spectra clearly show the transitions of the colourless open-ring and the coloured closed-ring forms of the DTE guest upon UV (λ = 365 nm), blue (λ = 405 nm) and green (λ = 535 nm) light exposure, where the latter is usually suppressed in crystalline DTE. Remarkably, no fatigue after ten switching cycles was observed and a high thermal stability of the coloured closed-ring form (at 50 °C for 1 h) was achieved.

16.
Chemistry ; 26(72): 17405-17415, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32557937

ABSTRACT

Borosulfates are compounds analogous to silicates, with heteropolyanionic subunits of vertex-linked (SO4 )- and (BO4 )-tetrahedra. In contrast to the immense structural diversity of silicates, the number of borosulfates is yet very limited and the extent of their properties is still unknown. This is particularly true for representatives with phyllosilicate and tectosilicate analogue anionic substructures. Herein, we present Ni[B2 (SO4 )4 ] and Co[B2 (SO4 )4 ], two new borosulfates with phyllosilicate analogue topology. While the anionic subunits of both structures are homeotypic, the positions of the charge compensating cations differ significantly: NiII is located between the borosulfate layers, while CoII -in contrast-is embedded within the layer. Detailed analysis of these two structures based on single-crystal X-ray diffraction, magnetochemical investigations, X-ray photoelectron spectroscopy, and quantum chemical calculations, unveiled the reasons for this finding. By in silico comparison with other divalent borosulfates, we uncovered systematic trends for phyllosilicate analogues leading to the prediction of new species.

17.
Adv Sci (Weinh) ; 7(10): 1903250, 2020 May.
Article in English | MEDLINE | ID: mdl-32440475

ABSTRACT

A strategy for efficaciously regulating perovskite crystallinity is proposed by using a volatile solid glycolic acid (HOCH2COOH, GA) in an FA0.85MA0.15PbI3 (FA: HC(NH2)2; MA: CH3NH3) perovskite precursor solution that is different from the common additive approach. Accompanied with the first dimethyl sulfoxide sublimation process, the subsequent sublimation of GA before 150 °C in the FA0.85MA0.15PbI3 perovskite film can artfully regulate the perovskite crystallinity without any residual after annealing. The improved film formation upon GA modification induced by the strong interaction between GA and Pb2+ delivers a champion power conversion efficiency (PCE) as high as 21.32%. In order to investigate the role of volatility in perovskite solar cells (PSCs), nonvolatile thioglycolic acid (HSCH2COOH, TGA) with a similar structure to GA is utilized as an additive reference. Large perovskite grains are obtained by TGA modification but with obvious pinholes, which directly leads to an increased defect density accompanied by a decline in PCE. Encouragingly, the champion PCE achieved for GA-based PSC device (21.32%) is almost 13% or 20% higher than those of the control device or TGA-based device. In addition, GA-modified PSCs exhibit the best stability in light-, thermal-, and humidity-based tests due to the improved film formation.

18.
Angew Chem Int Ed Engl ; 59(15): 6028-6036, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31943664

ABSTRACT

Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100-150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V-1 s-1 , superior to the previously reported polyimine based materials.

19.
J Am Chem Soc ; 142(4): 1792-1800, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31865703

ABSTRACT

Four spirobisacridine (SBA) hole-transporting materials were synthesized and employed in perovskite solar cells (PSCs). The molecules bear electronically inert alkyl chains of different length and bulkiness, attached to in-plane N atoms of nearly orthogonal spiro-connected acridines. Di-p-methoxyphenylamine (DMPA) substituents tailored to the central SBA-platform define electronic properties of the materials mimicking the structure of the benchmark 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD), while the alkyl pending groups affect molecular packing in thin films and affect the long-term performance of PSCs. Devices with SBA-based hole transporting layers (HTL) attain efficiencies on par with spiro-MeOTAD. More importantly, solar cells with the new HTMs are hysteresis-free and demonstrate good operational stability, despite being doped as spiro-MeOTAD. The best performing MeSBA-DMPA retained 88% of the initial efficiency after a 1000 h aging test under constant illumination. The results clearly demonstrate that SBA-based compounds are potent candidates for a design of new HTMs for PSCs with improved longevity.

20.
Adv Mater ; 31(39): e1903717, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31402527

ABSTRACT

Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...