Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 76(6): 1889-1897, 2020 12.
Article in English | MEDLINE | ID: mdl-33012205

ABSTRACT

Polycystic kidney disease (PKD) has been linked to abnormal structure/function of ciliary proteins, leading to renal dysfunction. Recently, attention has been focused in the significant vascular abnormalities associated with PKD, but the mechanisms underlying this phenomenon remain elusive. Here, we seek to define the molecular events regulating the angiogenic imbalance observed in PKD. Using micro computed tomography (n=7) and protein expression analysis (n=5), we assessed the vascular density and the angiogenic profile of noncystic organs in a well-established PKD rat model (Polycystic Kidney-PCK rat). Heart and lungs of PCK rats have reduced vascular density and decreased expression of angiogenic factors compared with wild type. Similarly, PCK-vascular smooth muscle cells (VSMCs; n=4) exhibited lower levels of vascular markers. Then, using small interfering RNA (n=4), we determined the role of the ciliary protein fibrocystin in wild type-VSMCs, a critical component/regulator of vascular structure and function. Reduction of fibrocystin in wild type-VSMCs (n=4) led to an abnormal angiogenic potential similar to that observed in PCK-VSMCs. Furthermore, we investigated the involvement of the hedgehog signaling, a pathway closely linked to the primary cilium and associated with vascular development, in PKD. Mechanistically, we demonstrated that impairment of the hedgehog signaling mediates, in part, this abnormal angiogenic phenotype. Lastly, overexpression of Gli1 in PCK-VSMCs (n=4) restored the expression levels of proangiogenic molecules. Our data support a critical role of fibrocystin in the abnormal vascular phenotype of PKD and indicate that a dysregulation of hedgehog may be responsible, at least in part, for these vascular deficiencies.


Subject(s)
Blood Vessels/metabolism , Disease Models, Animal , Hedgehog Proteins/metabolism , Polycystic Kidney Diseases/metabolism , Signal Transduction , Zinc Finger Protein GLI1/metabolism , Animals , Cells, Cultured , Cilia/metabolism , Hedgehog Proteins/genetics , Humans , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Polycystic Kidney Diseases/diagnostic imaging , Polycystic Kidney Diseases/genetics , Rats, Sprague-Dawley , X-Ray Microtomography , Zinc Finger Protein GLI1/genetics
2.
J Vis Exp ; (163)2020 09 03.
Article in English | MEDLINE | ID: mdl-32955500

ABSTRACT

There is significant interest in the use of stem cells (SCs) for the recovery of cardiac function in individuals with myocardial injuries. Most commonly, cardiac stem cell therapy is studied by delivering SCs concurrently with the induction of myocardial injury. However, this approach presents two significant limitations: the early hostile pro-inflammatory ischemic environment may affect the survival of transplanted SCs, and it does not represent the subacute infarction scenario where SCs will likely be used. Here we describe a two-part series of surgical procedures for the induction of ischemia-reperfusion injury and delivery of mesenchymal stem cells (MSCs). This method of stem cell administration may allow for the longer viability and retention around damaged tissue by circumventing the initial immune response. A model of ischemia reperfusion injury was induced in mice accompanied by the delivery of mesenchymal stem cells (3.0 x 105), stably expressing the reporter gene firefly luciferase under the constitutively expressed CMV promoter, intramyocardially 7 days later. The animals were imaged via ultrasound and bioluminescent imaging for confirmation of injury and injection of cells, respectively. Importantly, there was no added complication rate when performing this two-procedure approach for SC delivery. This method of stem cell administration, collectively with the utilization of state-of-the-art reporter genes, may allow for the in vivo study of viability and retention of transplanted SCs in a situation of chronic ischemia commonly seen clinically, while also circumventing the initial pro-inflammatory response. In summary, we established a protocol for the delayed delivery of stem cells into the myocardium, which can be used as a potential new approach in promoting regeneration of the damaged tissue.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Myocardium/metabolism , Reperfusion Injury/therapy , Animals , Disease Models, Animal , Female , Genes, Reporter , Luciferases, Firefly/genetics , Mice, Inbred C57BL
3.
Stem Cells ; 38(6): 808-814, 2020 06.
Article in English | MEDLINE | ID: mdl-32129537

ABSTRACT

Little is known on the phenotypic characteristics of stem cells (SCs) after they are transplanted to the myocardium, in part due to lack of noninvasive platforms to study SCs directly in the living subject. Reporter gene imaging has played a valuable role in the noninvasive assessment of cell fate in vivo. In this study, we validated a pathway-specific reporter gene that can be used to noninvasively image the phenotype of SCs transplanted to the myocardium. Rat mesenchymal SCs (MSCs) were studied for phenotypic evidence of myogenic characteristics under in vitro conditions. After markers of myogenic characteristics were identified, we constructed a reporter gene sensor, comprising the firefly luciferase (Fluc) reporter gene driven by the troponin T (TnT) promoter (cardio MSCs had threefold expression in polymerase chain reaction compared to control MSCs) using a two-step signal amplification strategy. MSCs transfected with TnT-Fluc were studied and validated under in vitro conditions, showing a strong signal after MSCs acquired myogenic characteristics. Lastly, we observed that cardio MSCs had higher expression of the reporter sensor compared to control cells (0.005 ± 0.0005 vs 0.0025 ± 0.0008 Tnt-Fluc/ubiquitin-Fluc, P < .05), and that this novel sensor can detect the change in the phenotype of MSCs directly in the living subject. Pathway-specific reporter gene imaging allows assessment of changes in the phenotype of MSCs after delivery to the ischemic myocardium, providing important information on the phenotype of these cells. Imaging sensors like the one described here are critical to better understanding of the changes that SCs undergo after transplantation.


Subject(s)
Genes, Reporter/genetics , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Humans
4.
Mol Imaging Biol ; 22(4): 948-957, 2020 08.
Article in English | MEDLINE | ID: mdl-31907845

ABSTRACT

PURPOSE: The maximal efficacy of cell therapy depends on the survival of stem cells, as well as on the phenotypic and biologic changes that may occur on these cells after transplantation. It has been hypothesized that the post-ischemic myocardial microenvironment can play a critical role in these changes, potentially affecting the survival and reparative potential of mesenchymal stem cells (MSCs). Here, we use a dual reporter gene sensor for the in vivo monitoring of the phenotype of MSCs and study their therapeutic effect on cardiac function. PROCEDURES: The mitochondrial sensor was tested in cell culture in response to different mitochondrial stressors. For in vivo testing, MSCs (3 × 105) were delivered in a murine ischemia-reperfusion (IR) model. Bioluminescence imaging was used to assess the mitochondrial biology and the viability of transplanted MSCs, while high-resolution ultrasound provided a non-invasive analysis of cardiac contractility and dyssynchrony. RESULTS: The mitochondrial sensor showed increased activity in response to mitochondrial stressors. Furthermore, when tested in the living subject, it showed a significant increase in mitochondrial dysfunction in MSCs delivered in IR, compared with those delivered under sham conditions. Importantly, MSCs delivered to ischemic hearts, despite their mitochondrial stress and poor survival, were able to induce a significant improvement in cardiac function, through decreased collagen deposition and resynchronization/contractility of left ventricular wall motion. CONCLUSIONS: The ischemic myocardium induces changes in the phenotype of transplanted MSCs. Despite their limited survival, MSCs still elicit a certain therapeutic response, as evidenced by improvement in myocardial remodeling and cardiac function. Maximization of the survival and reparative efficacy of stem cells remains a key for the success of stem cell therapies.


Subject(s)
Cellular Microenvironment , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardium/pathology , Animals , Cell Survival , Female , Heart Function Tests , Luminescent Measurements , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...