Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 469: 115062, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38768689

ABSTRACT

To conserve sequential behavior in relation to the topographic challenges of space, it is proposed that humans and nonhuman animals can organize behavior using different scaling principles. To deal with increases in linear distance, isochrony suggest that there is a corresponding increase in speed, whereas to deal with changes in curvature, speed is adjusted according to a power function. The present study investigates whether these principles provide a framework for describing the organization of mouse behavior in a variety of standard experimental tasks. The structure of movement was examined in ambulation during open field exploration; manipulation in a string-pulling task, in which a string is advanced hand over hand to retrieve food; and rung-walking, in which the limbs successively step from rung to rung on a horizontal ladder. Both principles were found to be conserved in the organization of mouse behavior across scales of movement. These principles provide novel measures of the temporal and geometric features of movement in the mouse and insights into how the temporal and geometric features of movement are conserved within different species.


Subject(s)
Exploratory Behavior , Animals , Mice , Male , Exploratory Behavior/physiology , Mice, Inbred C57BL , Movement/physiology , Motor Activity/physiology , Locomotion/physiology , Behavior, Animal/physiology , Walking/physiology
2.
Behav Brain Res ; 416: 113577, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34506841

ABSTRACT

Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.


Subject(s)
Cosmic Radiation/adverse effects , Cues , Exploratory Behavior/physiology , Orientation, Spatial/physiology , Radiation Exposure/adverse effects , Animals , Female , Male , Mice , Mice, Inbred C57BL , Space Flight
SELECTION OF CITATIONS
SEARCH DETAIL
...