Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 2(5)2015 Sep.
Article in English | MEDLINE | ID: mdl-26478911

ABSTRACT

Attraction to opposite-sex pheromones during rodent courtship involves a pathway that includes inputs to the medial amygdala (Me) from the main and accessory olfactory bulbs, and projections from the Me to nuclei in the medial hypothalamus that control reproduction. However, the consideration of circuitry that attributes hedonic properties to opposite-sex odors has been lacking. The medial olfactory tubercle (mOT) has been implicated in the reinforcing effects of natural stimuli and drugs of abuse. We performed a tract-tracing study wherein estrous female mice that had received injections of the retrograde tracer, cholera toxin B, into the mOT were exposed to volatile odors from soiled bedding. Both the anterior Me and ventral tegmental area sent direct projections to the mOT, of which a significant subset was selectively activated (expressed Fos protein) by testes-intact male (but not female) volatile odors from soiled bedding. Next, the inhibitory DREADD (designer receptors exclusively activated by designer drugs) receptor hM4Di was bilaterally expressed in the mOT of female mice. Urinary preferences were then assessed after intraperitoneal injection of either saline or clozapine-N-oxide (CNO), which binds to the hM4Di receptor to hyperpolarize infected neurons. After receiving CNO, estrous females lost their preference for male over female urinary odors, whereas the ability to discriminate these odors remained intact. Male odor preference returned after vehicle treatment in counterbalanced tests. There were no deficits in locomotor activity or preference for food odors when subject mice received CNO injections prior to testing. The mOT appears to be a critical segment in the pheromone-reward pathway of female mice.

2.
Behav Brain Res ; 274: 243-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25150042

ABSTRACT

Rodents rely upon their olfactory modality to perceive opposite-sex pheromonal odors needed to motivate courtship behaviors. Volatile and nonvolatile components of pheromonal odors are processed by the main (MOS) and accessory olfactory system (AOS), respectively, with inputs converging in the medial amygdala (Me). The Me in turn targets the mesolimbic dopamine system, including the nucleus accumbens core (AcbC) and shell (AcbSh), the ventral pallidum (VP), medial olfactory tubercle (mOT) and ventral tegmental area (VTA). We hypothesized that pheromone-induced dopamine (DA) release in the ventral striatum (particularly in the mAcb and mOT) may mediate the normal preference of female mice to investigate male pheromones. We made bilateral 6-OHDA lesions of DA fibers innervating either the mAcb alone or the mAcb+mOT in female mice and tested estrous females' preference for opposite-sex urinary odors. We found that 6-OHDA lesions of either the mAcb alone or the mAcb+mOT significantly reduced the preference of sexually naïve female mice to investigate breeding male urinary odors (volatiles as well as volatiles+nonvolatiles) vs. estrous female urinary odors. These same neurotoxic lesions had no effect on subjects' ability to discriminate between these two urinary odors, on their locomotor activity, or on their preference for consuming sucrose. The integrity of the dopaminergic innervation of the mAcb and mOT is required for female mice to prefer investigating male pheromones.


Subject(s)
Adrenergic Agents/toxicity , Odorants , Oxidopamine/toxicity , Smell/drug effects , Ventral Striatum/injuries , Ventral Striatum/physiology , Animals , Dopamine/metabolism , Female , Food Preferences/drug effects , Male , Mice , Nucleus Accumbens/injuries , Nucleus Accumbens/physiology , Olfactory Tubercle/injuries , Olfactory Tubercle/physiology , Sex Attractants , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...