Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 872: 162177, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36775145

ABSTRACT

In recent years, considerable computational advancements have been made allowing automated analysis of behavioural endpoints using video cameras. However, the results of such analyses are often confounded by a large variation among individuals, making it problematic to derive endpoints that allow distinguishing treatment effects in behavioural studies. In this study, we quantitatively analysed the effects of light conditions on the swimming behaviour of the freshwater amphipod Gammarus pulex by high-throughput tracking, and attempted to unravel among individual variation using size and sex. For this, we developed the R-package Kinematics, allowing for the rapid and reproducible analysis of the swimming behaviour (speed, acceleration, thigmotaxis, curvature and startle response) of G. pulex, as well as any other organism. Our results show a considerable amount of variation among individuals (standard deviation ranging between 5 and 115 % of the average swimming behaviour). The factors size and sex and the interaction between the two only explained a minor part of this found variation. Additionally, our study is the first to quantify the startle response in G. pulex after the light is switched on, and study the variability of this response between individuals. To analyse this startle response, we established two metrics: 1) startle response magnitude (the drop in swimming velocity directly after the light switches on), and 2) startle response duration (the time it takes to recover from the drop in swimming velocity to average swimming speed). Almost 80 % of the individuals showed a clear startle response and, therefore, these metrics demonstrate a great potential for usage in behavioural studies. The findings of this study are important for the development of appropriate experimental set-ups for behavioural experiments with G. pulex.


Subject(s)
Amphipoda , Animals , Humans , Amphipoda/physiology , Swimming , Behavior, Animal , Fresh Water
2.
Sci Total Environ ; 872: 162173, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36775155

ABSTRACT

Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 µg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Fluoxetine/toxicity , Amphipoda/physiology , Swimming , Behavior, Animal , Antidepressive Agents/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...