Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Pharm ; 644: 123304, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37572860

ABSTRACT

Previously reported gold coated iron oxide nanoparticles (Au-IONP's) have demonstrated their effectiveness as drug delivery vehicles for gemcitabine conjugated to a thermally labile Diels-Alder linker containing a chain of 4 carbon atoms (TTLD4) for the treatment of pancreatic cancer. Heat generated via laser irradiation of Au-IONPs facilitated retro Diels-Alder mediated release in a burst release profile where approximately half of all total release over 180 min occurred within the first 5 min. Two analogues of TTLD4, which differ only in linker chain length (TTLD3 & TTLD6) were synthesised and conjugated to Au-IONP's. Heat-mediated release of gemcitabine at 45 °C over 180 min from these formulations was confirmed to be based on linker length, which was 94%, 76% and 45% for TTLD3, TTLD4 and TTLD6, respectively. Drug loading of the Diels-Alder linkers in a 5:1 Drug/Au-IONP w/w ratio appears to favour those containing an even number of carbons TTLD4 (76%) & TTLD6 (57%) over TTLD3 (25%), possibly due to the linker likely being positioned perpendicular to the Au-IONP surface because of the 120 °C-C bond.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Humans , Gemcitabine , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Hot Temperature , Pancreatic Neoplasms
2.
Int J Pharm ; 629: 122363, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36336202

ABSTRACT

By carefully controlling the dose administered and the drug release rate from drug-eluting implants, safety and efficacy of the therapeutic agent dispensed can be improved. The present work focuses on the promising advantages of 3D Bioprinting process in developing two layers' implantable scaffolds. The two layers have different functions, in order to ensure a more effective and synergistic breast cancer therapy. First layer involves use of polymers such as Poly- ε-Caprolactone (PCL) and Chitosan (CS), and incorporation of 5-Fluorouracil (5-FU). The aim of the first layer is releasing the drug within 4 weeks, obtaining a prolonged and modified release. According to in vitro drug release tests performed, ∼32 % of 5-FU was released after one month, after an initial burst effect of 17.22 %. The sudden release of the drug into the body would quickly reach an effective therapeutic concentration, while the drug sustained release maintains an effective therapeutic concentration range during the administration time. The second layer is made exclusively from PCL as polymeric matrix, into which Gold Nanoparticles (AuNPs) were subsequently loaded, and its main purpose is to be radiation enhancement. The long biodegradation time of PCL would make the non-soluble scaffold an alternative to conventional chemotherapy, optimizing drug release to the specific needs of the patients.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Humans , Female , Polyesters/therapeutic use , Breast Neoplasms/drug therapy , Gold/therapeutic use , Fluorouracil , Polymers/therapeutic use , Drug Implants , Printing, Three-Dimensional
3.
Bioelectrochemistry ; 146: 108164, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35643021

ABSTRACT

With a rise in the development and subsequent employment of precision medicine, their lies an immediate necessity for the development of technology to enable the implementation of such treatment plans into the healthcare environment. Electrochemistry stands to offer one of the most viable techniques for such technologies given its success within current medical devices. One electrochemical technique, electrochemiluminescence (ECL), warrants investigation. Previously we have determined the inability to reliably detect cancer therapy gemcitabine via traditional ruthenium based ECL. Here we demonstrate how the addition of gold nanoparticles into the ECL film can promote GMB detection via enhanced electrocatalytic oxidation, generating the required ECL radicals. Via this approach we have been able to improve the ECL signal intensity 60-fold and achieve detection down to 6.25 µM across a linear range of 6.25-50 µM. Which lies within the therapeutically relevant range. This approach has successfully addressed the prior limitations encountered for the employment of traditional ruthenium based ECL for substance identification, where species exhibit limited electro-activity and suffer from electrochemically induced side reactions.


Subject(s)
Metal Nanoparticles , Ruthenium , Deoxycytidine/analogs & derivatives , Electrochemical Techniques/methods , Gold/chemistry , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Ruthenium/chemistry , Gemcitabine
4.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34835738

ABSTRACT

Hybrid iron oxide-gold nanoparticles are of increasing interest for applications in nanomedicine, photonics, energy storage, etc. However, they are often difficult to synthesise without experience or 'know-how'. Additionally, standard protocols do not allow for scale up, and this is significantly hindering their future potential. In this study, we seek to determine whether microfluidics could be used as a new manufacturing process to reliably produce hybrid nanoparticles with the line of sight to their continuous manufacture and scaleup. Using a Precision Nano NanoAssemblr Benchtop® system, we were able to perform the intermediate coating steps required in order to construct hybrid nanoparticles around 60 nm in size with similar chemical and physical properties to those synthesised in the laboratory using standard processes, with Fe/Au ratios of 1:0.6 (standard) and 1:0.7 (microfluidics), indicating that the process was suitable for their manufacture with optimisation required in order to configure a continuous manufacturing plant.

5.
Int J Pharm ; 604: 120727, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34029667

ABSTRACT

The Diels-Alder reaction and its retro breakdown has garnered increasing research focus due to several of its advantageous properties including, atomic conservation, reversibility, and substituent retention. This is especially true in biomedical application and nanomedicine development which display a preference for rapid, efficient, and clean "click" chemistry reactions allowing for delivery of active ingredients and subsequent release upon temperature elevation. There are multiple variations on the Diels-Alder reaction based around substitution position and materials being coupled which can affect the temperature threshold for and rate of the retro reaction reversal. Hence, the Diels-Alder reaction offers a simple coupling reaction for active ingredients with tailorable release. In this review the incorporation of the Diels-Alder chemistries and linkers within the biomedical and nanomedicine field will be discussed, as well as its use in future potential technologies.


Subject(s)
Nanomedicine , Cycloaddition Reaction , Temperature
6.
Pharmaceutics ; 9(4)2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28946666

ABSTRACT

Pancreatic cancer has been classified as a cancer of unmet need. After diagnosis the patient prognosis is dismal with few surviving over 5 years. Treatment regimes are highly patient variable and often the patients are too sick to undergo surgical resection or chemotherapy. These chemotherapies are not effective often because patients are diagnosed at late stages and tumour metastasis has occurred. Nanotechnology can be used in order to formulate potent anticancer agents to improve their physicochemical properties such as poor aqueous solubility or prolong circulation times after administration resulting in improved efficacy. Studies have reported the use of nanotechnologies to improve the efficacy of gemcitabine (the current first line treatment) as well as investigating the potential of using other drug molecules which have previously shown promise but were unable to be utilised due to the inability to administer through appropriate routes-often related to solubility. Of the nanotechnologies reported, many can offer site specific targeting to the site of action as well as a plethora of other multifunctional properties such as image guidance and controlled release. This review focuses on the use of the major nanotechnologies both under pre-clinical development and those which have recently been approved for use in pancreatic cancer therapy.

7.
J Control Release ; 266: 355-364, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-28943195

ABSTRACT

Hybrid nanoparticles (HNPs) have shown huge potential as drug delivery vehicles for pancreatic cancer. Currently, the first line treatment, gemcitabine, is only effective in 23.8% of patients. To improve this, a thermally activated system was developed by introducing a linker between HNPs and gemcitabine. Whereby, heat generation resulting from laser irradiation of the HNPs promoted linker breakdown resulting in prodrug liberation. In vitro evaluation in pancreatic adenocarcinoma cells, showed the prodrug was 4.3 times less cytotoxic than gemcitabine, but exhibited 11-fold improvement in cellular uptake. Heat activation of the formulation led to a 56% rise in cytotoxicity causing it to outperform gemcitabine by 26%. In vivo the formulation outperformed free gemcitabine with a 62% reduction in tumor weight in pancreatic xenografts. This HNP formulation is the first of its kind and has displayed superior anti-cancer activity as compared to the current first line drug gemcitabine after heat mediated controlled release.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Deoxycytidine/analogs & derivatives , Maleimides/administration & dosage , Nanoparticles/administration & dosage , Pancreatic Neoplasms/drug therapy , Prodrugs/administration & dosage , Animals , Antimetabolites, Antineoplastic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Drug Liberation , Female , Hot Temperature , Humans , Lasers , Maleimides/chemistry , Mice, Nude , Nanoparticles/chemistry , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Prodrugs/chemistry , Tumor Burden/drug effects , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL