Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 187(8): 1717-1735, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28641076

ABSTRACT

Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-ß signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring.


Subject(s)
Cicatrix/metabolism , Dipeptidyl Peptidase 4/metabolism , Fibroblasts/metabolism , Gingiva/metabolism , Skin/metabolism , Adult , Animals , Cells, Cultured , Cicatrix/pathology , Female , Fibroblasts/pathology , Fibrosis/metabolism , Fibrosis/pathology , Gingiva/pathology , Humans , Male , Middle Aged , Signal Transduction/physiology , Skin/pathology , Swine , Transforming Growth Factor beta/metabolism , Wound Healing/physiology , Young Adult
2.
Microvasc Res ; 94: 103-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24909900

ABSTRACT

The purpose of this study was to determine whether bidirectional flow exists in the sciatic vasa nervorum. Images obtained using high-frequency color Doppler ultrasound in duplex imaging mode (Vevo 2100) were studied retroactively. In Fig. 1 (left panel; rat 1), the color Doppler signal and flow-velocity waveforms are indicative of pulsatile flow traveling towards (B) and away (C) from the probe. In the right panel (Fig. 1; rat 2), there appears to be three distinct vessels, reflective of non-pulsatile negative flow (D), and pulsatile positive (E) and negative (F) flows. These data confirm the presence of bidirectional arterial flow in the sciatic vasa nervorum. Investigating bidirectional flow in the intact whole nerve may be helpful in elucidating novel features of nerve blood flow control in healthy and diseased states.


Subject(s)
Sciatic Nerve/blood supply , Vasa Nervorum/physiology , Animals , Glucose/chemistry , Male , Microcirculation , Muscle, Skeletal/pathology , Oxygen/chemistry , Rats , Rats, Sprague-Dawley , Regional Blood Flow , Ultrasonography, Doppler
3.
PLoS One ; 9(3): e90715, 2014.
Article in English | MEDLINE | ID: mdl-24608113

ABSTRACT

Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-ß signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype.


Subject(s)
Fibroblasts/cytology , Gingiva/cytology , Skin/cytology , Adolescent , Adult , Cell Proliferation , Female , Humans , Male , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...