Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appetite ; 198: 107355, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621593

ABSTRACT

Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead to increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean male and female mice, and with multiple reinforcer types.


Subject(s)
Cues , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Male , Female , Obesity/etiology , Obesity/psychology , Mice , Reinforcement, Psychology , Mice, Obese , Hyperphagia/psychology , Feeding Behavior/psychology , Sucrose/administration & dosage , Thinness/psychology
2.
bioRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260511

ABSTRACT

Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean males and female mice, and with multiple reinforcer types.

3.
Neuroscience ; 497: 39-52, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35276308

ABSTRACT

Recognizing and weighing the value of stimuli is necessary for survival, as it allows living things to respond quickly and adequately to new experiences by comparing them with previous ones. Recent evidence shows that context change could affect flavor learning, suggesting a more intricate scenario during complex associations of stimuli with opposite or different valence in a motivational conflict task. Furthermore, linked to the ability to weigh the value of stimuli is the ability to predict the consequences associated with them from previous experiences. The insular cortex (IC) is a brain hub connecting and integrating different sensory, emotional, motivational, and cognitive processing systems. In this regard, previous evidence indicates that glutamatergic activity in this area, mediated by N-methyl-D-aspartate receptors (NMDARs), could be important during positive or negative valence encoding. Hence, the present study examines the involvement of NMDARs in the IC during a complex association of stimuli with opposite valence through the modified inhibitory avoidance (MIA) task and memory updating of a previously learned appetitive context during latent inhibition of the MIA process. This study demonstrates that during a motivational conflict-learning task with stimuli of opposite valences, avoidance memory formation will prevail. NMDARs activation in the IC decreases avoidance memory formation during a complex task (MIA) but not memory formation for an appetitive context. Furthermore, NMDARs activation does not affect the transition from appetitive to aversive learning. Overall, our results propose a different IC-NMDARs function during novel learning and memory updating.


Subject(s)
Avoidance Learning , Receptors, N-Methyl-D-Aspartate , Avoidance Learning/physiology , Insular Cortex , Memory/physiology , Motivation
4.
Neurobiol Learn Mem ; 164: 107043, 2019 10.
Article in English | MEDLINE | ID: mdl-31325496

ABSTRACT

Taste memory recognition is crucial for species survival; thus, the acquisition of conditioned taste aversion (CTA) protects animals against consuming poisons or toxins. In nature, food and poison are confined in the same edible item; however, in the laboratory these food constituents are usually presented separately for experimental analysis. The taste, or conditioned stimulus (CS), can be hours apart from the gastric malaise, or unconditioned stimulus (US); this extended inter-stimulus interval (ISI) allows the analysis of a particular learning phase. Evidence indicates a relevant function of glutamatergic activity in the insular cortex (IC) throughout the ISI. N-methyl-D-aspartate receptors (NMDAR) are crucial during CTA acquisition and retrieval. However, the exact participation of NMDAR in the IC during the ISI has not been demonstrated. Thus, the aim of this work was to evaluate the effects of temporal NMDAR activation during four time frames throughout the ISI of conditioned sugar aversion with bilateral injections of NMDA at a physiological dose (1 µg/µl) in the IC, given (1) immediately before or (2) immediately after sugar presentation, or (3) immediately before or (4) immediately after LiCl i.p. injection. The results showed that NMDAR activation in the IC had a specific ISI effect during CTA acquisition, increasing aversive memory formation and delaying extinction only after CS presentation. Overall, these results demonstrate that NMDAR in the IC have a particular enhancing associative effect after CS and suggest that there is a precise coincidence in neurochemical events in the IC that correlates with the stimulus to be associated and the glutamate NMDAR activity that must be finely tuned in the ISI during CTA acquisition.


Subject(s)
Avoidance Learning/physiology , Cerebral Cortex/physiology , Conditioning, Classical/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Taste Perception/physiology , Animals , Avoidance Learning/drug effects , Cerebral Cortex/drug effects , Conditioning, Classical/drug effects , Excitatory Amino Acid Agonists/administration & dosage , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , N-Methylaspartate/administration & dosage , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...