Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0303480, 2024.
Article in English | MEDLINE | ID: mdl-38820441

ABSTRACT

Due to the dramatic reduction of sea cucumber Isostichopus badionotus populations in the Yucatan Peninsula by overfishing and poaching, aquaculture has been encouraged as an alternative to commercial catching and restoring wild populations. However, the scarcity of broodstock, the emergence of a new disease in the auricularia larvae stage, and the development of skin ulceration syndrome (SUS) in the culture have limited aquaculture development. This study presents the changes in the intestine and skin microbiota observed in early and advanced stages of SUS disease in cultured juvenile I. badionotus obtained during an outbreak in experimental culture through 16S rRNA gene sequencing and histological evidence. Our results showed inflammation in the intestines of juveniles at both stages of SUS. However, more severe tissue damage and the presence of bacterial clusters were detected only in the advanced stages of SUS. Differences in the composition and structure of the intestinal and skin bacterial community from early and advanced stages of SUS were detected, with more evident changes in the intestinal microbial communities. These findings suggest that SUS was not induced by a single pathogenic bacterium. Nevertheless, a decrease in the abundance of Vibrio and an increase in Halarcobacter (syn. Arcobacter) was observed, suggesting that these two bacterial groups could be keystone genera involved in SUS disease.


Subject(s)
Microbiota , Sea Cucumbers , Skin , Animals , Skin/microbiology , Skin/pathology , Sea Cucumbers/microbiology , Aquaculture , RNA, Ribosomal, 16S/genetics , Skin Ulcer/microbiology , Skin Ulcer/epidemiology , Skin Ulcer/pathology , Disease Outbreaks , Gastrointestinal Microbiome
2.
Arch Microbiol ; 204(8): 463, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35792945

ABSTRACT

For the first time, this study analyses the composition and diversity of the gut microbiota of Isostichopus badionotus in captivity, using high-throughput 16S rRNA sequencing, and predicts the metagenomic functions of the microbiota. The results revealed a different composition of the gut microbiota for the foregut (FG) and midgut (MG) compared to the hindgut (HG), with a predominance of Proteobacteria, followed by Actinobacteria, Bacteroidetes, and Firmicutes. The FG and MG demonstrated a greater bacterial diversity compared to the HG. In addition, a complex network of interactions was observed at the genus level and identified some strains with probiotic and bioremediation potentials, such as Acinetobacter, Ruegeria, Streptococcus, Lactobacillus, Pseudomonas, Enterobacter, Aeromonas, Rhodopseudomonas, Agarivorans, Bacillus, Enterococcus, Micrococcus, Bifidobacterium, and Shewanella. Predicting metabolic pathways revealed that the bacterial composition in each section of the intestine participates in different physiological processes such as metabolism, genetic and environmental information processing, organismal systems, and cellular processes. Understanding and manipulating microbe--host-environment interactions and their associated functional capacity could substantially contribute to achieving more sustainable aquaculture systems for I. badionotus.


Subject(s)
Gastrointestinal Microbiome , Sea Cucumbers , Animals , Firmicutes/genetics , Gastrointestinal Tract , RNA, Ribosomal, 16S/genetics
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918680

ABSTRACT

Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.


Subject(s)
Animals, Domestic/genetics , Animals, Wild/genetics , Gene Expression Profiling , Sea Cucumbers/genetics , Transcriptome , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Gene Ontology , Reproducibility of Results
4.
Nutrients ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517205

ABSTRACT

Sea cucumber body wall contains several naturally occurring bioactive components that possess health-promoting properties. Isostichopus badionotus from Yucatan, Mexico is heavily fished, but little is known about its bioactive constituents. We previously established that I. badionotus meal had potent anti-inflammatory properties in vivo. We have now screened some of its constituents for anti-inflammatory activity in vitro. Glycosaminoglycan and soluble protein preparations reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory responses in HaCaT cells while an ethanol extract had a limited effect. The primary glycosaminoglycan (fucosylated chondroitin sulfate; FCS) was purified and tested for anti-inflammatory activity in vivo. FCS modulated the expression of critical genes, including NF-ĸB, TNFα, iNOS, and COX-2, and attenuated inflammation and tissue damage caused by TPA in a mouse ear inflammation model. It also mitigated colonic colitis caused in mice by dextran sodium sulfate. FCS from I. badionotus of the Yucatan Peninsula thus had strong anti-inflammatory properties in vivo.


Subject(s)
Anti-Inflammatory Agents , Chondroitin Sulfates/isolation & purification , Chondroitin Sulfates/pharmacology , Glycosaminoglycans/isolation & purification , Glycosaminoglycans/pharmacology , Otitis/drug therapy , Sea Cucumbers/chemistry , Tissue Extracts/isolation & purification , Tissue Extracts/pharmacology , Animals , Chondroitin Sulfates/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/adverse effects , Disease Models, Animal , HaCaT Cells , Humans , In Vitro Techniques , Mexico , Mice , Otitis/chemically induced , Tetradecanoylphorbol Acetate/adverse effects
5.
MethodsX ; 6: 1627-1634, 2019.
Article in English | MEDLINE | ID: mdl-31367529

ABSTRACT

Isostichopus badionotus is a sea cucumber species of great ecological and economic relevance for Mexico and Central American and Caribbean countries; however, the protocols for the extraction of the nucleic acids have not yet been published. In this study, we describe the first protocols to obtain DNA and RNA from different tissues of I. badionotus, which include the respiratory tree, gonad, longitudinal muscle bands, anterior intestine and cloaca. The extraction of high-quality DNA was performed using the DNeasy Blood & Tissue kit (Qiagen, Valencia, CA, USA) with minor modifications in different points of the protocol. Concerning the RNA, the method of TRIzol was used. This method is particularly advantageous in situations where cells or tissues are enriched for endogenous RNases or when the separation of cytoplasmic RNA from nuclear RNA is impractical. The methodologies used in this study allowed us to obtain DNA and RNA of high quality and integrity in the different tissues of I. badionotus, which will be the basis for future genomic and transcriptomic studies. •The successful extraction of DNA and RNA was achieved in the different tissues of I. badionotus.•The concentrations of DNA and RNA obtained were adequate for a diversity of analyses at a molecular level.

6.
Mar Pollut Bull ; 56(9): 1570-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18639903

ABSTRACT

The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.


Subject(s)
Anthozoa/microbiology , Bacteria/growth & development , Ships , Water Microbiology , Analysis of Variance , Animals , Atlantic Ocean , Risk Assessment
7.
J Agric Food Chem ; 51(1): 319-25, 2003 Jan 01.
Article in English | MEDLINE | ID: mdl-12502427

ABSTRACT

The nutritional and physiological effects of raw cowpea (Vigna unguiculata (L) Walp.) seed meal, protein isolate (globulins), or starch on the metabolism of young growing rats have been evaluated in 14-day trials. Wet and dry weight gain, feed conversion efficiency, and lipid and protein accretion were significantly reduced as a result of inclusion of seed meal, globulins, or starch in the diet, with growth retardation being most marked with the seed meal. The proportional weights of the small intestine and pancreas were increased by meal diets, and serum cholesterol levels were slightly reduced. The globulins and raw starch also increased relative small intestine weights but had no effect on the pancreas or serum constituents. The effects of cowpeas on rats appeared to be due primarily to the combined actions of globulins, resistant starches, protease inhibitors, and possibly fiber and non-starch polysaccharides on intestinal and systemic metabolism.


Subject(s)
Animal Nutritional Physiological Phenomena , Dietary Proteins/administration & dosage , Fabaceae , Plant Proteins/administration & dosage , Seeds , Starch/administration & dosage , Animals , Cholesterol/blood , Intestine, Small/growth & development , Male , Organ Size , Pancreas/growth & development , Rats , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...