Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 2(56): 56ra81, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-21048217

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a rare progressive neurodegenerative disorder characterized by accumulation of cholesterol in the endolysosomes. Previous studies implicating oxidative stress in NPC1 disease pathogenesis raised the possibility that nonenzymatic formation of cholesterol oxidation products could serve as disease biomarkers. We measured these metabolites in the plasma and tissues of the Npc1(-/-) mouse model and found several cholesterol oxidation products that were elevated in Npc1(-/-) mice, were detectable before the onset of symptoms, and were associated with disease progression. Nonenzymatically formed cholesterol oxidation products were similarly increased in the plasma of all human NPC1 subjects studied and delineated an oxysterol profile specific for NPC1 disease. This oxysterol profile also correlated with the age of disease onset and disease severity. We further show that the plasma oxysterol markers decreased in response to an established therapeutic intervention in the NPC1 feline model. These cholesterol oxidation products are robust blood-based biochemical markers for NPC1 disease that may prove transformative for diagnosis and treatment of this disorder, and as outcome measures to monitor response to therapy.


Subject(s)
Biomarkers/blood , Cholesterol , Niemann-Pick Disease, Type C/blood , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cholesterol/blood , Cholesterol/chemistry , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Molecular Structure , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/physiopathology , Oxidation-Reduction , Proteins/genetics , Proteins/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...