Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(3): 866-872, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38205713

ABSTRACT

A critical bottleneck for the training of large neural networks (NNs) is communication with off-chip memory. A promising mitigation effort consists of integrating crossbar arrays of analogue memories in the Back-End-Of-Line, to store the NN parameters and efficiently perform the required synaptic operations. The "Tiki-Taka" algorithm was developed to facilitate NN training in the presence of device nonidealities. However, so far, a resistive switching device exhibiting all the fundamental Tiki-Taka requirements, which are many programmable states, a centered symmetry point, and low programming noise, was not yet demonstrated. Here, a complementary metal-oxide semiconductor (CMOS)-compatible resistive random access memory (RRAM), showing more than 30 programmable states with low noise and a symmetry point with only 5% skew from the center, is presented for the first time. These results enable generalization of Tiki-Taka training from small fully connected networks to larger long-/short-term-memory types of NN.

2.
ACS Nano ; 17(19): 18706-18715, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37578964

ABSTRACT

Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN.

3.
Angew Chem Int Ed Engl ; 60(33): 17981-17988, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34048139

ABSTRACT

Nanopatterned surfaces enhance incident electromagnetic radiation and thereby enable the detection and characterization of self-assembled monolayers (SAMs), for instance in surface-enhanced Raman spectroscopy (SERS). Herein, Au nanohole arrays, developed and characterized as SERS substrates, are exemplarily used for monitoring a solid-phase deprotection and a subsequent copper(I)-catalyzed azide-alkyne cycloaddition "click" reaction, performed directly on the corresponding SAMs. The SERS substrate was found to be highly reliable in terms of signal reproducibility and chemical stability. Furthermore, the intermediates and the product of the solid-phase synthesis were identified by SERS. The spectra of the immobilized compounds showed minor differences compared to spectra of the microcrystalline solids. With its uniform SERS signals and the high chemical stability, the platform paves the way for monitoring molecular manipulations in surface functionalization applications.

4.
Nano Lett ; 20(6): 4346-4353, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32369701

ABSTRACT

Enhanced electromagnetic fields in nanometer gaps of plasmonic structures increase the optical interaction with matter, including Raman scattering and optical absorption. Quantum electron tunneling across sub-1 nm gaps, however, lowers these effects again. Understanding these phenomena requires controlled variation of gap sizes. Mechanically actuated plasmonic antennas enable repeatable tuning of gap sizes from the weak-coupling over the quantum-electron-tunneling to the direct-electrical-contact regime. Gap sizes are controlled electrically via leads that only weakly disturb plasmonic modes. Conductance signals show a near-continuous transition from electron tunneling to metallic contact. As the antenna's absorption cross-section is reduced, thermal expansion effects are negligible, in contrast to conventional break-junctions. Optical scattering spectra reveal first continuous red shifts for decreasing gap sizes and then blue shifts below gaps of 0.3 nm. The approach provides pathways to study opto- and electromolecular processes at the limit of plasmonic sensing.

5.
Nanoscale Res Lett ; 8(1): 71, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23402551

ABSTRACT

We report on Si nanopatterning through an on-chip self-assembled porous anodic alumina (PAA) masking layer using reactive ion etching based on fluorine chemistry. Three different gases/gas mixtures were investigated: pure SF6, SF6/O2, and SF6/CHF3. For the first time, a systematic investigation of the etch rate and process anisotropy was performed. It was found that in all cases, the etch rate through the PAA mask was 2 to 3 times lower than that on non-masked areas. With SF6, the etching process is, as expected, isotropic. By the addition of O2, the etch rate does not significantly change, while anisotropy is slightly improved. The lowest etch rate and the best anisotropy were obtained with the SF6/CHF3 gas mixture. The pattern of the hexagonally arranged pores of the alumina film is, in this case, perfectly transferred to the Si surface. This is possible both on large areas and on restricted pre-defined areas on the Si wafer. PACS: 78.67.Rb, 81.07.-b, 61.46.-w.

SELECTION OF CITATIONS
SEARCH DETAIL
...