Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 161(1): 207-28, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20718751

ABSTRACT

BACKGROUND AND PURPOSE: Recently identified antagonists of the urotensin-II (U-II) receptor (UT) are of limited utility for investigating the (patho)physiological role of U-II due to poor potency and limited selectivity and/or intrinsic activity. EXPERIMENTAL APPROACH: The pharmacological properties of two novel UT antagonists, GSK1440115 and GSK1562590, were compared using multiple bioassays. KEY RESULTS: GSK1440115 (pK(i)= 7.34-8.64 across species) and GSK1562590 (pK(i)= 9.14-9.66 across species) are high affinity ligands of mammalian recombinant (mouse, rat, cat, monkey, human) and native (SJRH30 cells) UT. Both compounds exhibited >100-fold selectivity for UT versus 87 distinct mammalian GPCR, enzyme, ion channel and neurotransmitter uptake targets. GSK1440115 showed competitive antagonism at UT in arteries from all species tested (pA(2)= 5.59-7.71). In contrast, GSK1562590 was an insurmountable UT antagonist in rat, cat and hUT transgenic mouse arteries (pK(b)= 8.93-10.12 across species), but a competitive antagonist in monkey arteries (pK(b)= 8.87-8.93). Likewise, GSK1562590 inhibited the hU-II-induced systemic pressor response in anaesthetized cats at a dose 10-fold lower than that of GSK1440115. The antagonistic effects of GSK1440115, but not GSK1562590, could be reversed by washout in rat isolated aorta. In ex vivo studies, GSK1562590 inhibited hU-II-induced contraction of rat aorta for at least 24 h following dosing. Dissociation of GSK1562590 binding was considerably slower at rat than monkey UT. CONCLUSIONS AND IMPLICATIONS: Whereas both GSK1440115 and GSK1562590 represent high-affinity/selective UT antagonists suitable for assessing the (patho)physiological role of U-II, only GSK1562590 exhibited sustained UT residence time and improved preclinical efficacy in vivo.


Subject(s)
Benzamides/pharmacology , Benzoxazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Urotensins/metabolism , Animals , Arteries/drug effects , Arteries/physiology , Benzamides/chemistry , Benzoates/chemistry , Benzoates/pharmacology , Benzoxazines/chemistry , Cats , Cell Line , Dose-Response Relationship, Drug , Haplorhini , Humans , Male , Mice , Mice, Transgenic , Molecular Structure , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Opioid, kappa/agonists , Tachykinins , Vasoconstriction
2.
Biomarkers ; 12(1): 87-112, 2007.
Article in English | MEDLINE | ID: mdl-17438656

ABSTRACT

The assessment of target organ damage is important in defining the optimal treatment of hypertension and blood pressure-related cardiovascular disease. The aims of the present study were (1) to investigate candidate biomarkers of target organ damage, osteopontin (OPN) and plasminogen activator inhibitor-1 (PAI-1), in models of malignant hypertension with well characterized end-organ pathology; and (2) to evaluate the effects of chronic treatment with a p38 MAPK inhibitor. Gene expression, plasma concentrations, and renal immunohistochemical localization of OPN and PAI-1 were measured in stroke-prone spontaneously hypertensive rats on a salt-fat diet (SFD SHR-SP) and in spontaneously hypertensive rats receiving N(omega)-nitro-L-arginine methyl ester (L-NAME SHR). Plasma concentrations of OPN and PAI-1 increased significantly in SFD SHR-SP and L-NAME SHR as compared with controls, (2.5-4.5-fold for OPN and 2.0-9.0-fold for PAI-1). The plasma levels of OPN and PAI-1 were significantly correlated with the urinary excretion of albumin (p < 0.0001). Elevations in urinary albumin, plasma OPN and PAI-1 were abolished by chronic treatment (4-8 weeks) with a specific p38 MAPK inhibitor, SB-239063AN. OPN immunoreactivity was localized predominantly in the apical portion of tubule epithelium, while PAI-1 immunoreactivity was robust in glomeruli, tubules and renal artery endothelium. Treatment with the p38 MAPK inhibitor significantly reduced OPN and PAI-1 protein expression in target organs. Kidney gene expression was increased for OPN (4.9- and 7.9-fold) and PAI-1 (2.8- and 11.5-fold) in SFD SHR-SP and L-NAME SHR, respectively. In-silico pathway analysis revealed that activation of p38 MAPK was linked to OPN and PAI-1 via SPI, c-fos and c-jun; suggesting that these pathways may play an important role in p38 MAPK-dependent hypertensive renal dysfunction. The results suggest that enhanced OPN and PAI-1 expression reflects end-organ damage in hypertension and that suppression correlates with end-organ protection regardless of overt antihypertensive action.


Subject(s)
Biomarkers/analysis , Hypertension/metabolism , Osteopontin/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Enzyme-Linked Immunosorbent Assay , Hypertension/physiopathology , Immunohistochemistry , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Inbred SHR
3.
J Cardiovasc Pharmacol ; 38(4): 606-17, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11588531

ABSTRACT

Evidence suggests that endothelin receptor antagonists may have therapeutic potential for the chronic treatment of heart failure. In the current study, the effects of an orally active mixed endothelin-A/endothelin-B (ETA /ETB ) receptor antagonist (enrasentan) were assessed in a model of cardiac hypertrophy and dysfunction (spontaneously hypertensive stroke prone rats) maintained on a high-salt/high-fat diet. Echocardiography was used to quantify cardiac performance and left ventricular dimensions. Enrasentan (1,200 and 2,400 parts per million in the high-salt/high-fat diet) had no significant effects on body weight and systolic blood pressure. However, increases in heart rate were not observed in the enrasentan-treated groups at 12 weeks (p < 0.05). Enrasentan-treated groups exhibited significantly improved survival (90-95% vs. 30% [control rats] at 18 weeks; p < 0.001). Enrasentan treatments also increased stroke volume (at 8, 12, and 16 weeks) and cardiac index (at 8 and 16 weeks) 33-50% and 45-63%, respectively. Enrasentan treatments reduced the relative wall thickness (14-27% at 8 and 12 weeks), ratio of left ventricular mass to body weight (20% at 12 weeks), and ratio of terminal heart weight to body weight (16-23%, p < 0.05). Finally, circulating aldosterone concentration (54-57%) and proANF fragment (33%) were reduced in enrasentan-treated groups (54-57% and 33%, respectively). Mixed ETA /ETB receptor antagonism improves cardiac performance and attenuates ventricular remodeling and premature mortality in an aggressive hypertension model.


Subject(s)
Carboxylic Acids/therapeutic use , Hypertension/drug therapy , Hypertrophy, Left Ventricular/drug therapy , Indans/therapeutic use , Ventricular Remodeling/drug effects , Aldosterone/blood , Animals , Atrial Natriuretic Factor/blood , Blood Pressure/drug effects , Blood Pressure/physiology , Endothelin Receptor Antagonists , Heart Rate/drug effects , Heart Rate/physiology , Hypertension/blood , Hypertension/mortality , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/mortality , Male , Myocardium/metabolism , Protein Precursors/blood , Rats , Rats, Inbred SHR , Survival Rate , Ventricular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...