Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8793, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37258537

ABSTRACT

The ability to configure the optimal buffer layer for GaN growth depends on the knowledge of relaxation processes that occurs during the cooling step while countering the tensile stresses due to the contrast of thermal expansion coefficient between GaN and Si(111) substrate. Here, we inaugurate the pulse atomic-layer epitaxy (PALE) AlN layer to reinforce the buffer layer to achieve a thick GaN epilayer which is crucial for high performance power devices. The characteristics of grown GaN on Si substrate based on PALE AlN thickness of 0 ~ 100 nm are investigated along with microstructural evolution between AlN NL and composition-graded AlGaN buffer layer. PALE AlN layer deposited with an optimum thickness of 50 nm and above was observed to exhibit a highly uniform coalesced GaN epilayer surface with root-mean square (RMS) roughness of 0.512 nm. The thickness of the PALE AlN layer substantially affected the crystallinity of the top GaN epilayer where the lowest value for symmetric (0 0 0 2) and asymmetric (1 0 -1 2) x-ray rocking curve analysis were achieved, indicating the reduction of threading dislocation density in the growth structure. Transition of the E2 (high) peak from the Raman spectrum shows that the strain compression in GaN epilayer is directly proportional to the thickness of the PALE AlN layer.

3.
Sci Rep ; 11(1): 9724, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33958689

ABSTRACT

We demonstrated high-quality single crystalline a-plane undoped-gallium nitride grown on a nonpatterned r-plane sapphire substrate via metal-organic chemical vapor deposition. The effect of four different numbers of sandwiched strain-periodic AlN/GaN multilayers on the strain state, crystal quality, optical and electrical properties was investigated. Field emission scanning electron microscopy and atomic force microscopy showed that the surface morphology was improved upon insertion of 120 pairs of AlN/GaN thin layers with a root-mean-square roughness of 2.15 nm. On-axis X-ray ω-scan rocking curves showed enhanced crystalline quality: the full width at half maximum decreased from 1224 to 756 arcsec along the [0001] direction and from 2628 to 1360 arcsec along the [1-100] direction for a-GaN grown with 120 pairs of AlN/GaN compared to a-GaN without AlN/GaN pairs. Reciprocal space mapping showed that a-plane GaN with a high number of AlN/GaN pairs exhibits near-relaxation strain states. Room-temperature photoluminescence spectra showed that the sample with the highest number of AlN/GaN pairs exhibited the lowest-intensity yellow and blue luminescence bands, indicating a reduction in defects and dislocations. The a-plane InGaN/GaN LEDs with 120 pairs of SSPM-L AlN/GaN exhibited a significant increase (~ 250%) in light output power compared to that of LEDs without SSPM-L AlN/GaN pairs.

SELECTION OF CITATIONS
SEARCH DETAIL
...