Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(12): 123703, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586915

ABSTRACT

Diffusion cells are devices made of donor and acceptor compartments (DC and AC), separated by a membrane. They are widely used in pharmaceutical, cosmetic, toxicology, and protective equipment tests (e.g., gloves) to measure the kinetics of permeants (molecules and nanoparticles) across biological membranes as the skin. However, rarely is the concentration of permeants in the AC measured in continuous or in real-time, and this limitation leads to significant discrepancies in the calculations of kinetic parameters that define the permeation mechanisms. In this study, a diffusion cell compatible with positron emission tomography was used to measure the permeation kinetics of nanoparticles across glove membranes. The technology allows for the measurement of nanoparticle concentration in real-time in the two compartments (DC and AC) and at a detection sensitivity several orders of magnitude higher compared with conventional spectroscopies, thus allowing a much more precise extraction of kinetic parameters. Ultra-small (<10 nm) gold nanoparticles were used as a model nanoparticle contaminant. They were radiolabeled, and their diffusion kinetics was measured in continuous through latex and nitrile polymer membranes. Permeation profiles were recorded at sub-nanomolar sensitivity and in real-time, thus allowing the high precision extraction of kinetic permeation parameters. The technology, methodology, and data extraction process developed in this work could be applied to measure in real-time the kinetics of diffusion of a whole range of potentially toxic molecules and nanoparticles across polymer membranes, including glove membranes.


Subject(s)
Metal Nanoparticles , Polymers , Gloves, Protective , Gold , Materials Testing , Permeability , Positron-Emission Tomography
2.
J Control Release ; 337: 661-675, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34271034

ABSTRACT

Diffusion cells are routinely used in pharmacology to measure the permeation of pharmaceutical compounds and contaminants across membranes (biological or synthetic). They can also be used to study drug release from excipients. The device is made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, permeation of molecules across membranes is measured by sampling from the AC at different time points. However, this process disturbs the equilibrium of the cell. Furthermore, analytical techniques used in association with diffusion cells sometimes lack either accuracy, sensitivity, or both. This work reports on the development of nuclear imaging - compatible diffusion cells. The cell is made of a polymer transparent to high-energy photons typically detected in positron emission tomography (PET). It was tested in a finite-dose set-up experiment with a pre-clinical PET system. Porous cellulose membranes (3.5, 25 and 300 kDa), a common excipient in pharmacology, as well as for dialysis membranes, were used as test membranes. The radioisotope 89Zr chelated with deferoxamine B (DFO; 0.65 kDa), was used as an imaging probe (7-10 MBq; 0.2-0.3 nMol 89Zr-DFO). In medicine, DFO is also commonly used for iron removal treatments and pharmacological formulations often require the association of this molecule with cellulose. Permeation profiles were obtained by measuring the radioactivity in the DC and AC for up to 2 weeks. The kinetic profiles were used to extract lag time, influx, and diffusion coefficients of DFO across porous cellulose membranes. A sensitivity threshold of 0.005 MBq, or 3.4 fmol of 89Zr-DFO, was revealed. The lag time to permeation (τ) measured in the AC compartment, was found to be 1.33, 0.5, and 0.19 h with 3.5, 25, and 300 kDa membranes, respectively. Diffusion coefficients of 3.65 × 10-6, 8.33 × 10-6, and 4.74 × 10-5 cm2 h-1 where revealed, with maximal pseudo steady-state influx values (Jpss) of 6.55 × 10-6, 1.76 × 10-5, and 1.29 × 10-5 nmol cm-2 h-1. This study confirms the potential of the technology for monitoring molecular diffusion and release processes at low concentrations, high sensitivities, in real time and in a visual manner.


Subject(s)
Deferoxamine , Zirconium , Positron-Emission Tomography , Radioisotopes , Renal Dialysis , Tissue Distribution
3.
Molecules ; 24(16)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412609

ABSTRACT

Nanotechnologies are increasingly being developed for medical purposes. However, these nanomaterials require ultrastability for better control of their pharmacokinetics. The present study describes three types of ultrastable gold nanoparticles stabilized by thiolated polyethylene glycol groups remaining intact when subjected to some of the harshest conditions described thus far in the literature, such as autoclave sterilization, heat and freeze-drying cycles, salts exposure, and ultracentrifugation. Their stability is characterized by transmission electron microscopy, UV-visible spectroscopy, and dynamic light scattering. For comparison purposes, two conventional nanoparticle types were used to assess their colloidal stability under all conditions. The ability of ultrastable gold nanoparticles to encapsulate bimatoprost, a drug for glaucoma treatment, is demonstrated. MTS assays on human corneal epithelial cells is assessed without changing cell viability. The impact of ultrastable gold nanoparticles on wound healing dynamics is assessed on tissue engineered corneas. These results highlight the potential of ultrastable gold nanoparticles as a drug delivery system in ocular therapy.


Subject(s)
Drug Carriers , Drug Delivery Systems , Gold , Metal Nanoparticles , Cell Line , Cell Survival , Chemical Phenomena , Chemistry Techniques, Synthetic , Drug Carriers/chemistry , Gold/chemistry , Humans , Ligands , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Spectrum Analysis , Wound Healing
4.
BMC Complement Altern Med ; 17(1): 52, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28095910

ABSTRACT

BACKGROUND: Nymphaea alba L. represents an interesting field of study. Flowers have antioxidant and hepatoprotective effects, rhizomes constituents showed cytotoxic activity against liver cell carcinoma, while several Nymphaea species have been reported for their hepatoprotective effects. Leaves of N. alba have not been studied before. Therefore, in this study, in-depth characterization of the leaf phytoconstituents as well as its antioxidant and hepatoprotective activities have been performed where N. alba leaf extract was evaluated as a possible therapeutic alternative in hepatic disorders. METHODS: The aqueous ethanolic extract (AEE, 70%) was investigated for its polyphenolic content identified by high-resolution electrospray ionisation mass spectrometry (HRESI-MS/MS), while the petroleum ether fraction was saponified, and the lipid profile was analysed using gas liquid chromatography (GLC) analysis and compared with reference standards. The hepatoprotective activity of two doses of the extract (100 and 200 mg/kg; P.O.) for 5 days was evaluated against CCl4-induced hepatotoxicity in male Wistar albino rats, in comparison with silymarin. Liver function tests; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT) and total bilirubin were performed. Oxidative stress parameters; malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (TAC) as well as inflammatory mediator; tumour necrosis factor (TNF)-α were detected in the liver homogenate. Histopathological examination of the liver and immunohistochemical staining of caspase-3 were performed RESULTS: Fifty-three compounds were tentatively identified for the first time in N.alba leaf extract, where ellagitannins represent the main identified constituents. Nine hydrocarbons, two sterols and eleven fatty acids were identified in the petroleum ether extract where, palmitic acid and linolenic acids represented the major saturated and unsaturated fatty acid respectively. N.alba AEE significantly improved the liver function, oxidative stress parameters as well as TNF-α in addition to the amelioration of histopathological features of the liver and a profound decrease in caspase-3 expression. CONCLUSION: These results shed light on the hepatoprotective effect of N. alba that is comparable with that of silymarin. The antioxidant activities of N. alba extract in addition to the inhibition of crucial inflammatory mediator, as TNF-α, might be the possible hepatoprotective mechanisms.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Nymphaea/chemistry , Plant Extracts/chemistry , Protective Agents/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Egypt , Humans , Liver/drug effects , Liver/immunology , Male , Nymphaea/growth & development , Plant Extracts/pharmacology , Plant Leaves/chemistry , Protective Agents/pharmacology , Rats , Rats, Wistar , Silymarin/pharmacology , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
5.
Gene ; 432(1-2): 7-18, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19084582

ABSTRACT

Regions required for chicken glycine decarboxylase gene transcription were examined. A region between -82 and +22 (-82/+22) with motifs similar to binding sites for Sp1, NF-Y and CP2 was assigned to the proximal promoter active in both chicken hepatoma cell line, LMH, and hepatocytes in primary culture. In LMH cells, a genomic region, KX, between KpnI (-4155) and XbaI (-2113) sites changed promoter activity with the aid of four additional genomic regions termed upstream regulator regions for suppression (UpRS) and activation (UpRA) of transcription. Those precise segments are UpR1S (-376/-346), UpR1A (-345/-291), UpR2S (-137/-108) and UpR2A (-107/-83). Within KX, -4155/-3605 activates and -3604/-3367 suppresses the promoter. -3366/-3024 activates or suppresses the promoter, probably with different UpR counterparts. -2197/-2113 restores the actions of -3366/-3024. While in LMH cells, the upstream UpRs abrogate the functions of immediately downstream UpRs, UpR1S or UpR2S or both may be at least less active in hepatocytes than in LMH cells. Nuclear extracts from various chicken tissues and LMH cells had UpR2A binding proteins in different populations, suggesting that together with the UpRs, the segments in KX are involved in the regulation of cell type-specific transcription of this gene.


Subject(s)
Chickens/genetics , Genome/genetics , Glycine Dehydrogenase (Decarboxylating)/genetics , Transcription, Genetic , Animals , Base Sequence , Cell Line, Tumor , DNA/metabolism , Exons/genetics , Gene Expression Regulation, Enzymologic , Genome, Human/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Humans , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/metabolism , Nucleic Acid Conformation , Organ Specificity , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...