Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 17(2): 253-63, 2015.
Article in English | MEDLINE | ID: mdl-26199904

ABSTRACT

OBJECTIVE: Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA) and mutagenicity of the dental pulp stem cells (DPSCs). MATERIALS AND METHODS: This is an in vitro experimental study. PVF samples were collected from horseshoe crabs from beaches in Malaysia and the crude extract was prepared. DPSCs were treated with different concentrations of PVF crude extract in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (cytotoxicity test). We choose two inhibitory concentrations (IC50 and IC25) and two PVF concentrations which produced more cell viability compared to a negative control (100%) for further tests. Quantitative analysis of the proliferation activity of PVF was studied using the AlamarBlue®assay for 10 days. Population doubling times (PDTs) of the treatment groups were calculated from this assay. Genotoxicity was evaluated based on the CA and Ames tests. Statistical analysis was carried out using independent t test to calculate significant differences in the PDT and mitotic indices in the CA test between the treatment and negative control groups. Significant differences in the data were P<0.05. RESULTS: A total of four PVF concentrations retrieved from the MTT assay were 26.887 mg/ml (IC50), 14.093 mg/ml (IC25), 0.278 mg/ml (102% cell viability) and 0.019 mg/ml (102.5% cell viability). According to the AlamarBlue®assay, these PVF groups produced comparable proliferation activities compared to the negative (untreated) control. PDTs between PVF groups and the negative control were insignificantly different (P>0.05). No significant aberrations in chromosomes were observed in the PVF groups and the Ames test on the PVF showed the absence of significant positive results. CONCLUSION: PVF from horseshoe crabs produced insignificant proliferative activity on treated DPSCs. The PVF was non-genotoxic based on the CA and Ames tests.

2.
Cell Biol Int ; 38(5): 582-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24375868

ABSTRACT

Stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs) obtained from the dental pulp of human extracted tooth were cultured and characterized to confirm that these were mesenchymal stem cells. The proliferation rate was assessed using AlamarBlue® cell assay. The differentially expressed genes in SHED and DPSCs were identified using the GeneFishing™ technique. The proliferation rate of SHED (P < 0.05) was significantly higher than DPSCs while SHED had a lower multiplication rate and shorter population doubling time (0.01429, 60.57 h) than DPSCs (0.00286, 472.43 h). Two bands were highly expressed in SHED and three bands in DPSCs. Sequencing analysis showed these to be TIMP metallopeptidase inhibitor 1 (TIMP1), and ribosomal protein s8, (RPS8) in SHED and collagen, type I, alpha 1, (COL1A1), follistatin-like 1 (FSTL1), lectin, galactoside-binding, soluble, 1, (LGALS1) in DPSCs. TIMP1 is involved in degradation of the extracellular matrix, cell proliferation and anti-apoptotic function and RPS8 is involved as a rate-limiting factor in translational regulation; COL1A1 is involved in the resistance and elasticity of the tissues; FSTL1 is an autoantigen associated with rheumatoid arthritis; LGALS1 is involved in cell growth, differentiation, adhesion, RNA processing, apoptosis and malignant transformation. This, along with further protein expression analysis, holds promise in tissue engineering and regenerative medicine.


Subject(s)
Cell Proliferation/physiology , Dental Pulp/cytology , Dental Pulp/metabolism , Gene Expression Regulation, Developmental , Stem Cells/metabolism , Adolescent , Adult , Cells, Cultured , Child , Child, Preschool , Female , Humans , Male , Young Adult
3.
J Conserv Dent ; 16(4): 331-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23956536

ABSTRACT

AIM: To evaluate physical properties and cytotoxicity of pure gypsum-based (pure-GYP) and experimental gypsum-based biomaterials mixed with polyacrylic acid (Gyp-PA). The results were compared with calcium hydroxide (CH) and glass ionomer cement (GIC) for application as base/liner materials. MATERIALS AND METHODS: Vicat's needle was used to measure the setting time and solubility (%) was determined by percentage of weight loss of the materials following immersion in distilled water. For cytotoxicity test, eluates of different concentrations of materials were obtained and pipetted onto L-929 mouse fibroblast cultures and incubated for 3 days. Cellular viability was assessed using Dimethylthiazol diphenyltetrazolium bromide test to determine the cytotoxicity level. Statistical significance was determined by one-way analysis of variance followed by post hoc test (P < 0.05). RESULTS: Setting time was significantly higher for pure-GYP and Gyp-PA; solubility test showed a similar tendency (pure-Gyp > Gyp-PA > CH = GIC). The pure-Gyp was found as the least cytotoxic materials at different concentrations. At 100 mg/mL dilutions of materials in growth medium highest cytotoxicity was observed with CH group. CONCLUSION: Cytotoxic effect was not observed with pure-Gyp; application of this novel biomaterial on deeper dentin/an exposed pulp and possibility of gradual replacement of this biodegradable material by dentin like structure would be highly promising.

4.
Singapore Dent J ; 33(1): 19-23, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23739319

ABSTRACT

The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications.


Subject(s)
Pemetrexed , Tooth, Deciduous , Aluminum Compounds , Calcium Compounds , Dental Cements , Drug Combinations , Glass Ionomer Cements , Humans , Root Canal Filling Materials , Stem Cells
5.
J Conserv Dent ; 14(4): 406-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22144813

ABSTRACT

AIM: This study aims to evaluate the cytotoxicity of a new fast set highly viscous conventional glass ionomer cement (GIC) with L929 fibroblasts. MATERIALS AND METHODS: The cement capsule was mixed and introduced into a paraffin wax mould. After setting, the cement was incubated in Dulbecco's Modified Eagle's Medium. Six replicates of the material extract were added to the culture medium in 96-well plates. L929 mouse fibroblast cells were added into the wells and then incubated for 48 h. Dimethylthiazol diphenyltetrazolium bromide test was performed for cytotoxicity evaluation. RESULTS: The results showed that this GIC brand did not yield a half-maximal inhibitory concentration value, IC50, as the cell viability was above 50% at all concentrations. Cell viability over 90% was observed at the concentrations of 3.125 and 1.5625 mg/ml. Maximum concentration of the material showed cell viability of 59.4%. CONCLUSIONS: This new fast set highly viscous conventional GIC showed low cytotoxicity to mouse fibroblast cells, and it can be suggested as a substitute for dental cements exhibiting a long setting time.

6.
Int J Toxicol ; 30(4): 443-51, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21540334

ABSTRACT

This study aimed to evaluate the in vitro cytotoxic effects of locally produced processed natural coral (PNC) using human osteoblasts (HOS). Cytotoxicity was not observed when HOS cells were cultured with PNC, as assessed by (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide; MTT) and Neutral Red (NR) assays at concentration up 200 mg/mL for up to 72 hours. Flow cytometry (FCM) analysis showed that PNC (200 mg/mL) did not decrease viability of HOS cells after 48 and 72 hours of treatment. In a cell attachment study, the HOS cells attached to the edge of the PNC disc, and later grew into the pores of the PNC disc. All results from these studies indicate that locally produced PNC material is noncytotoxic and favors the growth of HOS cells.


Subject(s)
Anthozoa , Biocompatible Materials , Osteoblasts/cytology , Animals , Apoptosis , Biocompatible Materials/toxicity , Cell Adhesion , Cell Line , Flow Cytometry , Humans , Materials Testing , Neutral Red/chemistry , Tetrazolium Salts/chemistry , Thiazoles/chemistry
7.
Cell Tissue Bank ; 10(3): 205-13, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18975136

ABSTRACT

This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.


Subject(s)
Bone Substitutes , Cartilage/physiology , Chondrocytes/physiology , Osteogenesis/physiology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Bone Demineralization Technique , Cartilage/cytology , Cattle , Cell Differentiation/physiology , Cell Proliferation , Cell Survival/physiology , Cells, Cultured , Chondrocytes/ultrastructure , Collagen Type II/biosynthesis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...