Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(43): 65088-65099, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35482239

ABSTRACT

Although the solar distillers are one of the economic solutions for addressing the freshwater shortage problem around the world, these devices suffer from low productivity. In this paper, a simple and inexpensive modification was made in the tubular solar still (TSS) to improve its productivity. The adjustment is to tilt the glass cylinder, something to help the droplets move down and collect them as a distillate. The modified inclined TSS was abbreviated by ITSS. Then, three different inclination angles were investigated (2°, 4°, and 6°), and the performance of ITSS with these inclination angles was compared with that of TSS without inclination angle (0°). Moreover, to obtain additional productivity for ITSS, the basin was painted with a mixture of matte black paint with nanomaterials. Three types of nanomaterials were studied (copper oxide nanoparticles, titanium oxide nanoparticles, and silver nanoparticles). For further improvement in ITSS productivity, Ag nanoparticles mixed with phase change material (PCM) were employed beneath the ITSS base to work as thermal energy storage material. Experimental results revealed that the highest average daily productivity rise for ITSS over TSS was observed when tilting ITSS by 6°, where the daily productivity rise and thermal efficiency reached 24% and 37.6%, respectively. Besides, the average increase in daily distillate of ITSS was 34%, 30%, and 28.5% when using Ag, CuO, and TiO2, respectively, compared to that of TSS. Moreover, ITSS with Ag provided the best thermal efficiency compared to the other operating cases, where it was 39.1%. In addition, ITSS-PCM-Ag showed a daily productivity of 62.5% more than that of TSS and a thermal efficiency of 43.5%.

2.
Environ Sci Pollut Res Int ; 29(42): 63248-63259, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35459998

ABSTRACT

The shortage of potable water is a global problem. One of the techniques used to participate solving this problem is the solar distiller. The main demerit of solar distiller is its low output yield. So, this work aims at improving the freshwater productivity of a dish solar distiller by enlarging its absorber surface area and increasing its evaporation rate. As a result, the effect of using three different shapes of absorber liner was investigated: convex dish absorber, stepped absorber, and corrugated surface over the stepped absorber. In addition, the absorber of dish distiller was covered by a cotton wick to enlarge the wetted surface area. Also, different water depths (1.0, 2.0, 3.0, 4.0, and 5.0 cm) in dish distiller with stepped absorber were investigated. Moreover, the distance below basin liner was occupied by energy storing medium (paraffin wax + titanium oxide nanoparticles). The performances of dish distiller, dish distiller with stepped absorber, and dish distiller with corrugated absorber were evaluated and compared to that of a conventional solar distiller. Experimental results revealed that the performance of dish distiller with corrugated absorber, wick, and energy storing material was higher than that of dish distiller with stepped absorber, which was better than that of dish distiller, which was higher than that of conventional distiller. As well, the highest improvement in productivity of dish distiller with stepped absorber was 125% compared to conventional distiller and took place at 2-cm water depth. In addition, the productivity of dish distiller with corrugated absorber and wick was improved by 160% compared to that of conventional distiller. Additionally, the highest performance was obtained for dish distiller with corrugated absorber, wick, and energy storing material, where the productivity was augmented by about 183%, and the thermal efficiency reached 69.5%.


Subject(s)
Drinking Water , Nanoparticles , Water Purification , Paraffin , Sunlight , Water Purification/methods
3.
Environ Sci Pollut Res Int ; 29(38): 57946-57963, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35355192

ABSTRACT

Freshwater is one of the most essential needs of society. Due to the limited amount of potable water on Earth, guaranteeing the supply of clean water to society is a major challenge. By utilizing abundant sunshine, solar still could be utilized to provide the necessary amount of drinking water in remote locations. The issue of restricted daily production inspires researchers to investigate novel ways for enhancing the thermal performance of desalination techniques while lowering expenses. In this work, the scholars improved a unique distillation method related to solar stills. The authors presented a novel improvement to the vertical distiller design to enhance the exposure area while decreasing the thickness of the water layer as much as possible. Thus, two rotational discs (flat type) covered with wick were integrated into the vertical distiller basin at 1.5 rpm and 5 cm water depth. Furthermore, providing vacuum via a fan with an external condenser. Besides, various rotating speeds (from 400 to 2000 rpm) were tested to determine the perfect fan speed that provides the maximum yield. The experimental findings revealed that the modified vertical distiller produced more pure water than the conventional distiller. Moreover, the rotation of wick discs and vacuum fan enhanced the yield of distillers enormously. Besides, the highest distiller performance was obtained at 1.5 rpm (wick disc speed) and 1600 rpm (fan speed, 10 min ON, and 10 min OFF). Moreover, the daily freshwater output was 19.1 L/m2 day for MDSVD without the fan and 23.65 L/m2 day for MDSVD with the fan. So, the yield of MSSVD without/with vacuum fan was improved by 548.65% and 660.45%, respectively, over that of CTD. The best thermal efficacy for MDSVD without/with vacuum fan was 77.47% and 84.05%, respectively. Lastly, the average cost of freshwater was 0.021, 0.0177, and 0.0164 $/L for CTD, MDSVD without/with vacuum fan, respectively.


Subject(s)
Water Purification , Distillation , Fresh Water , Vacuum , Water
4.
Environ Sci Pollut Res Int ; 28(39): 54260-54281, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34390475

ABSTRACT

Access to freshwater is narrowed down every day in the world. Many diseases of human beings are related to water supplies contaminated or unpurified. Nowadays, there are massive water shortages in developed and developing nations due to unplanned mechanisms and water pollution caused by human behavior. Water desalination with no impact on the environment is the necessity of the hour. The distillation of saline or brackish water using free solar energy such as solar still is one of the techniques of water purification providing ultrapure distilled water. Besides, solar still is an economical and eco-friendly method, particularly in arid areas. Solar distillers also provide renewable equipment for freshwater productivity. The still design was affected by several operating and environmental factors. The low productivity of the solar still is its major drawback, so many researchers have studied various models to enhance solar still productivity. This paper aims to review the numerous studies of solar still incorporated with rotating parts that are deemed to be effective and efficient design because rotating parts break water surface tension, increase evaporation area, and improve the still performance. Throughout this detailed review, the scholars intend to present, clarify, and analyze the status of several solar distillers with various rotary component arrangements such as a fan, rotating wick, shaft, drum, disc... etc. In addition, based on the entire work, it was confirmed and recommended that the solar still with rotating parts should be continuously followed to supply potable water efficiently and economically. Different results showed the importance of part rotation (best daily yield & improvement) such as vertical disc distiller (16.5 L/m2/d & 617.4%), drum distiller (9.22 L/m2/d & 350%), moving wick solar still (9.17 L/m2/d & 315%), shaft still (0.83 L/m2/d & 39.49%), and vibratory distiller (5.8 L/m2/d & 132%). These important results obtain the importance of embedding rotating parts into the solar stills.

SELECTION OF CITATIONS
SEARCH DETAIL
...