Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Eng Technol ; 13(2): 207-218, 2022 04.
Article in English | MEDLINE | ID: mdl-34409579

ABSTRACT

PURPOSE: The pre-clinical testing of cardiovascular implants gains increasing attention due to the complexity of novel implants and new medical device regulations. It often relies on large animal experiments that are afflicted with ethical and methodical challenges. Thus, a method for simulating physiological heart motions is desired but lacking so far. METHODS: We developed a robotic platform that allows simulating the trajectory of any point of the heart (one at a time) in six degrees of freedom. It uses heart motion trajectories acquired from cardiac magnetic resonance imaging or accelero-meter data. The rotations of the six motors are calculated based on the input trajectory. A closed-loop controller drives the platform and a graphical user interface monitors the functioning and accuracy of the robot using encoder data. RESULTS: The robotic platform can mimic physiological heart motions from large animals and humans. It offers a spherical work envelope with a radius of 29 mm, maximum acceleration of 20 m/s2 and maximum deflection of ±19° along all axes. The absolute mean positioning error in x-, y- and z-direction is 0.21 ±0.06, 0.31 ±0.11 and 0.17 ±0.12 mm, respectively. The absolute mean orientation error around x-, y- and z-axis (roll, pitch and yaw) is 0.24 ±0.18°, 0.23 ±0.13° and 0.18 ±0.18°, respectively. CONCLUSION: The novel robotic approach allows reproducing heart motions with high accuracy and repeatability. This may benefit the device development process and allows re-using previously acquired heart motion data repeatedly, thus avoiding animal trials.


Subject(s)
Defibrillators, Implantable , Robotics , Animals , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...