Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076473

ABSTRACT

Plants have a high regeneration capacity and some plant species can regenerate clone plants, called plantlets, from detached vegetative organs. We previously outlined the molecular mechanisms underlying plantlet regeneration from Rorippa aquatica (Brassicaceae) leaf explants. However, the fundamental difference between the plant species that can and cannot regenerate plantlets from vegetative organs remains unclear. Here, we hypothesized that the viability of leaf explants is a key factor affecting the regeneration capacity of R. aquatica. To test this hypothesis, the viability of R. aquatica and Arabidopsis thaliana leaf explants were compared, with respect to the maintenance of photosynthetic activity, senescence, and immune response. Time-course analyses of photosynthetic activity revealed that R. aquatica leaf explants can survive longer than those of A. thaliana. Endogenous abscisic acid (ABA) and jasmonic acid (JA) were found at low levels in leaf explant of R. aquatica. Time-course transcriptome analysis of R. aquatica and A. thaliana leaf explants suggested that senescence was suppressed at the transcriptional level in R. aquatica. Application of exogenous ABA reduced the efficiency of plantlet regeneration. Overall, our results propose that in nature, plant species that can regenerate in nature can survive for a long time.

2.
Plant Cell Physiol ; 61(2): 353-369, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31651939

ABSTRACT

Some plant species have a striking capacity for regeneration in nature, including regeneration of the entire individual from explants. However, due to the lack of suitable experimental models, the regulatory mechanisms of spontaneous whole plant regeneration are mostly unknown. In this study, we established a novel model system to study these mechanisms using an amphibious plant within Brassicaceae, Rorippa aquatica, which naturally undergoes vegetative propagation via regeneration from leaf fragments. Morphological and anatomical observation showed that both de novo root and shoot organogenesis occurred from the proximal side of the cut edge transversely with leaf vascular tissue. Time-series RNA-seq analysis revealed that auxin and cytokinin responses were activated after leaf amputation and that regeneration-related genes were upregulated mainly on the proximal side of the leaf explants. Accordingly, we found that both auxin and cytokinin accumulated on the proximal side. Application of a polar auxin transport inhibitor retarded root and shoot regeneration, suggesting that the enhancement of auxin responses caused by polar auxin transport enhanced de novo organogenesis at the proximal wound site. Exogenous phytohormone and inhibitor applications further demonstrated that, in R. aquatica, both auxin and gibberellin are required for root regeneration, whereas cytokinin is important for shoot regeneration. Our results provide a molecular basis for vegetative propagation via de novo organogenesis.


Subject(s)
Plant Development/genetics , Plant Development/physiology , Regeneration/genetics , Regeneration/physiology , Rorippa/growth & development , Rorippa/genetics , Rorippa/metabolism , Cell Division , Cell Proliferation , Cytokinins , Gene Expression Regulation, Plant , Gibberellins , Indoleacetic Acids/metabolism , Plant Growth Regulators , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...