Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(28): 18766-18774, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37427598

ABSTRACT

This study aimed to investigate the impact of WO3 on the thermal stability of glass, as measured by the glass transition temperature (Tg), as well as the activation energy (Ea) of proton conduction and proton mobility (µH). These parameters were analyzed based on variations in the glass network structure and the nature of the P-O and O-H bonds in 35HO1/2-xWO3-8NbO5/2-5LaO3/2-(52 - x) PO5/2 (x = 2, 4, 6, and 8) glasses. As previously predicted by a linear regression model, replacing PO5/2 with WO3 resulted in an increase in Tg and µH at Tg. The observed enhancement rates were +9.1 °C per mol% of WO3 for Tg and 0.09 per mol% of WO3 for log(µH at Tg [cm2 V-1 s-1]), which aligned with the predicted values of +6.5 °C and 0.08, respectively, validating the linear regression model. The increased Tg was attributed to the formation of heteroatomic P-O-W linkages that tightly cross-linked the phosphate chains. The decrease in Ea and increase in µH at Tg with increasing WO3 content were attributed to the reduction of the energy barrier for inter-phosphate chain proton migration owing to the increasing proton migration paths through P-O-W linkages. This µH enhancement is distinct from previously reported ones due to the reduction of the energy barrier for proton dissociation from OH groups. This phenomenon can be attributed to the mixed glass former effect in proton conducting glass.

2.
Inorg Chem ; 61(35): 13700-13707, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35998340

ABSTRACT

The thermal stability and high-temperature phase transformation of metastable Cu2ZnGeO4 were investigated in an Ar atmosphere by thermogravimetry, differential thermal analysis, and high-temperature X-ray diffraction. Three Cu-deficient CuI2-xZnGeO4-2/x phases with a wurtzite-related structure were observed, with varying amounts of copper deficiency. The metastable Cu2ZnGeO4 was stable at approximately 275 °C and transformed into intermediate phases. The intermediate phases had a wurtz-kesterite structure with a small number of copper and oxygen vacancies, which later transformed into a high-temperature phase at approximately 425 °C. The crystal structure of the high-temperature phase was assumed to be a deficient wurtzite-related structure with hexagonal closely packed oxygen and deficient copper sites on the order of tens of a percent. The high-temperature phase decomposed into stable Cu2O, GeO2, and Zn2GeO4 phases above 550 °C. The mechanism for the formation of the phase with a large amount of copper deficiency is discussed, leading to an understanding of the formation process for the copper-deficient phase of complex compounds containing monovalent copper.

3.
Chemphyschem ; 23(3): e202100840, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34862847

ABSTRACT

Anhydrous silicophosphoric acid glass with an approximate composition of H5 Si2 P9 O29 was synthesized and its thermal and proton-conducting properties were characterized. Despite exhibiting a glass transition at 192 °C, the supercooled liquid could be handled as a solid up to 280 °C owing to its high viscosity. The glass and its melt exhibited proton conduction with a proton transport number of ∼1. Although covalent O-H bonds were weakened by relatively strong hydrogen bonding, the proton conductivity (4×10-4  S cm-1 at 276 °C) was considerably lower than that of phosphoric acid. The high viscosity of the melt was due to the tight cross-linking of phosphate ion chains by six-fold-coordinated Si atoms. The low proton conductivity was attributed to the trapping of positively charged proton carriers around anionic SiO6 units (expressed as (SiO6/2 )2- ) to compensate for the negative charges.


Subject(s)
Glass , Protons , Electric Conductivity , Glass/chemistry , Hydrogen Bonding
4.
Phys Chem Chem Phys ; 24(2): 634-638, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34908057

ABSTRACT

Valence band dispersions of single-crystalline SnS1-xSex solid solutions were observed by angle-resolved photoemission spectroscopy (ARPES). The hole effective masses, crucial factors in determining thermoelectric properties, were directly evaluated. They decrease slightly with increasing Se content in the low Se composition range but sharply in the high Se composition range.

5.
J Phys Chem Lett ; 12(12): 3120-3126, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33755486

ABSTRACT

Photoluminescence (PL) emission of colloidal PbSe/CdSe core/shell quantum dots (QDs, CdSe shell thickness: 0.2 nm) at the lowest exciton state was investigated at room temperature and varying inter-QD distance (L = 7-240 nm) by changing the QD concentration. A distinct enhancement of the valley splitting of PbSe QDs was observed upon reducing L. Simultaneously, there was a redshift in the emission due to Förster resonance energy transfer (FRET), when the L value was still sufficiently large (7 nm ≤ L ≤ 50 nm) so that the wave functions of different QDs do not overlap. The enhanced valley splitting under no apparent external field is quite interesting as a method to control the valley splitting. The electronic coupling leading to FRET may enhance the valley splitting, because it occurs in an identical range of L.

6.
RSC Adv ; 11(5): 3012-3019, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424211

ABSTRACT

The models to describe the proton mobility (µ H) together with the glass transition temperature (T g) of proton conducting phosphate glasses employing the glass composition as descriptors have been developed using a statical analysis approach. According to the models, the effects of additional HO1/2, MgO, BaO, LaO3/2, WO3, NbO5/2, BO3/2 and GeO2 as alternative to PO5/2 were found as following. µ H at T g is determined first by concentrations of HO1/2 and PO5/2, and µ H at T g increases with increasing HO1/2 concentration and decreasing PO5/2. The component oxides are categorized into three groups according to the effects on µ H at T g and T g. The group 1 oxides increase µ H at T g and decrease T g, and HO1/2, MgO, BaO and LaO3/2 and BO3/2 are involved in this group. The group 2 oxides increase both µ H at T g and T g, and WO3 and GeO2 are involved in this group. The group 3 oxides increase T g but do not vary µ H at T g. Only NbO5/2 falls into the group 3 among the oxides examined in this study. The origin of the effect of respective oxide groups on µ H at T g and T g were discussed.

7.
Phys Chem Chem Phys ; 21(20): 10744-10749, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31086916

ABSTRACT

The proton transport properties of 32 kinds of proton-conducting phosphate glasses with broad ranges of glass transition temperature, proton conductivity, and the proton carrier concentration were studied. Almost constant proton mobility of around 2 × 10-8 cm2 V-1 s-1 at the glass transition temperature, corresponding to a diffusion coefficient of approximately 4 × 10-10 cm2 s-1, was found for the glasses. The reason why the diffusion coefficient of protons is almost constant in various proton-conducting phosphate glasses was discussed based on the role of the protons as a cross-linker within the phosphate framework via hydrogen bonding. We evaluated the highest proton conductivity of the phosphate glasses and melts based on the almost constant mobility at their glass transition temperatures and obtained a highest expected proton conductivity of 7.5 × 10-3 S cm-1 at 300 °C. The potential of proton-conducting phosphate glasses as electrolytes in intermediate temperature fuel cells was also discussed.

8.
Inorg Chem ; 58(7): 4262-4267, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30875215

ABSTRACT

We synthesized solid solutions of ß-CuGaO2 and ß-LiGaO2 (i.e., ß-(Cu1- xLi x)GaO2) by partial ion exchange of Cu+ in ß-CuGaO2 with Li+ from LiCl in the composition range of 0 ≤ x ≤ 0.89. The energy band gap of ß-CuGaO2 (1.47 eV) increased linearly up to 3.0 eV with increasing Li content, covering the full visible range. The crystal structures of the solid solutions were analyzed using the Rietveld method. The structural distortions of the solid solutions with respect to the ideal binary wurtzite-type structure were relatively small because of the similar ionic radii of Li+, Cu+, and Ga3+. Based on a recently proposed hypothesis relating structural distortion to the nature of the band gap (i.e., direct or indirect), it is expected that the solid solution has a direct band gap. We anticipate that this solid solution system will contribute to the realization of oxide-based optoelectronic devices.

9.
ACS Omega ; 3(6): 6703-6709, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458844

ABSTRACT

Colloidal CdSe quantum dot (QD) phosphors have attracted considerable attention as green and red phosphors for blue backlight downconversion in next-generation liquid-crystal displays because of their excellent emission features including tunable emission wavelength and narrow emission bands. Alternatives to CdSe, which do not contain toxic cadmium, are strongly desired to ensure safety and reduce the environmental load of consumer products. Herein, we synthesized colloidal Zn(Te,Se)/ZnS core/shell QDs and demonstrated narrow-band green photoluminescence (PL) emission. A full width at half-maximum of 30 nm was achieved for PL emission at 535 nm from Zn(Te0.77Se0.23)/ZnS core/shell QDs with a core QD diameter of 4.3 nm. This emission characteristic was as good as that of CdSe QDs.

10.
Phys Chem Chem Phys ; 19(43): 29669-29675, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29085935

ABSTRACT

Proton conducting phosphate glasses were prepared by electrochemical substitution of sodium ions with protons applied to glasses with the compositions xNaO1/2-1WO3-8NbO5/2-5LaO3/2-(86 - x)PO5/2 (x = 28, 32, 35, 38, and 40). The mobilities of proton carriers in the glasses were studied in terms of the polymerization degree of the phosphate framework. The proton mobility at 200 °C increased as the depolymerization of the phosphate framework developed up to x = 38, and decreased at x = 40. On the basis of Raman and infrared spectra measurements of the O-H stretching vibration region, the decreasing mobility at x > 38 was attributed to the increasing concentration of protons trapped by non-bridging oxygen in P2O74- ions, owing to strong O-H bonding. We found that the highly polymerized phosphate framework decreased the mobility of proton carriers, not because of suppression of the proton dissociation from oxygen atoms but rather the suppression of the proton migration. The compositions at which the phosphate framework was sufficiently depolymerized and did not contain P2O74- ions as a main component, achieved high mobility of proton carriers in phosphate glasses.

11.
Inorg Chem ; 56(22): 14277-14283, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29083882

ABSTRACT

The quaternary I2-II-IV-O4 semiconductor, Cu2ZnGeO4, with a wurtz-kesterite structure and 1.4 eV energy band gap has been synthesized for the first time via ion exchange of precursor Na2ZnGeO4. Its crystal structure was refined by Rietveld analysis, and the structural distortion was quantitatively evaluated based on the cation tetrahedral tilting and angle distortion indexes. The tetrahedral distortion in Cu2ZnGeO4 was smaller than in Ag2ZnGeO4 but larger than in ß-CuGaO2, suggesting an indirect band gap of Cu2ZnGeO4. Density functional theory calculations using the functional of the local density approximation with corrections for on-site Coulomb interactions indicated that Cu2ZnGeO4 is an indirect semiconductor as expected from its structural feature. However, the energy difference between the direct and indirect band gaps is very small, suggesting that Cu2ZnGeO4 shows strong light absorption near the band edge.

12.
Inorg Chem ; 56(22): 13949-13954, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29083885

ABSTRACT

The sodium ions in Na3Zr2Si2PO12 (NASICON) were substituted with protons using an electrochemical alkali-proton substitution (APS) technique at 400 °C under a 5% H2/95% N2 atmosphere. The sodium ions in NASICON were successfully substituted with protons to a depth of <400 µm from the anode. Completely protonated NASICON, i.e., H3Zr2Si2PO12, was obtained to a depth <40 µm from the anode, although complete protonation of NASICON cannot be achieved by ion exchange in aqueous acid. H3Zr2Si2PO12 was amorphous, whereas the partially protonated NASICON was crystalline, and its unit cell volume decreased with an increase in the extent of substitution. Amorphous H3Zr2Si2PO12 was prepared by pressure-induced amorphization of the NASICON framework, in which an internal pressure of ∼3.5 GPa was induced by the substitution of large sodium ions with small protons during APS at 400 °C.

13.
Inorg Chem ; 55(15): 7610-6, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27438905

ABSTRACT

The electronic structures of delafossite α-CuGaO2 and wurtzite ß-CuGaO2 were calculated based on density functional theory using the local density approximation functional including the Hubbard correction (LDA+U). The differences in the electronic structure and physical properties between the two polymorphs were investigated in terms of their crystal structures. Three major structural features were found to influence the electronic structure. The first feature is the atomic arrangements of cations. In the conduction band of α-CuGaO2 with a layered structure of Cu2O and Ga2O3, Cu and Ga states do not mix well; the lower part of the conduction band mainly consists of Cu 4s and 4p states, and the upper part consists of Ga 4s and 4p states. By contrast, in ß-CuGaO2, which is composed of CuO4 and GaO4 tetrahedra, Cu and Ga states are well-mixed. The second feature is the coordination environment of Cu atoms; the breaking of degeneracy of Cu 3d orbitals is determined by the crystal field. Dispersion of the Cu 3d valence band of ß-CuGaO2, in which Cu atoms are tetrahedrally coordinated to oxygen atoms, is smaller than those in α-CuGaO2, in which Cu atoms are linearly coordinated to oxygen atoms; this results in a larger absorption coefficient and larger hole effective mass in ß-CuGaO2 than in α-CuGaO2. The interatomic distance between Cu atoms-the third feature-also influences the dispersion of the Cu 3d valence band (i.e., the effective hole mass); the effective hole mass decreases with decreasing interatomic distance between Cu atoms in each structure. The results obtained are valuable for understanding the physical properties of oxide semiconductors containing monovalent copper and silver.

14.
Phys Chem Chem Phys ; 17(35): 22855-61, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26265082

ABSTRACT

Electrochemical substitution of sodium ions with protons (alkali-proton substitution; APS), and the injection of proton carriers was applied to sodium lanthanum phosphate glasses. A clear and homogeneous material was obtained for a glass of composition 25NaO1/2-8LaO3/2-66PO5/2-1GeO2 following APS, with a resulting proton conductivity of 4 × 10(-6) S cm(-1) at 250 °C. The glass underwent phase separation and crystallization at temperatures >255 °C, forming a highly hygroscopic and proton conducting H3PO4 phase in addition to LaP5O14 and other unidentified phases. A glass of composition 25NaO1/2-8LaO3/2-67PO5/2 underwent phase separation and crystallization during APS, forming both H3PO4 and LaP5O14 phases. Sodium lanthanum phosphate glasses are prone to phase separation and crystallization during APS unlike the previously reported NaO1/2-WO3-NbO5/2-LaO3/2-PO5/2 glasses. The phase separation was explained by a reduction in viscosity following APS and the introduction of protons, which exhibit high field strength. Thus, phase separation and crystallization of glasses during APS was difficult to avoid. An approach to suppress phase separation is discussed.

15.
Phys Chem Chem Phys ; 17(20): 13640-6, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25939317

ABSTRACT

Structural changes of 35NaO1/2-1WO3-8NbO5/2-5LaO3/2-51PO5/2 glass (1W-glass) before and after the electrochemical substitution of sodium ions with protons by alkali-proton substitution (APS) are studied by Raman and (31)P magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies. The glass before APS consists of (PO3(-))8.6(P2O7(4-)) chains on average and the terminal Q(1) units (-O-PO3(3-)) are bound to MO6 octahedra (M denotes niobium or tungsten) through P-O-M bonds. Some non-bridging oxygens (NBOs) in the MO6 octahedra are present in addition to the bridging oxygens (BOs) in P-O-M bonds. APS induces fragmentation of the phosphate chains because the average chain length decreases to (PO3(-))3.7(P2O7(4-)) after APS, despite the total number of modifier cations of sodium and lanthanum ions and protons being unaffected by APS. This fragmentation is induced by some of the NBOs in the MO6 octahedra before APS, changing to BOs of the newly formed M-O-P bonds after APS, because of the preferential formation of P-OH bonds over M-OH ones in the present glass. We show that APS under the conditions used here is not a simple substitution of sodium ions with protons, but it is accompanied by the structural relaxation of the glass to stabilize the injected protons.

16.
Inorg Chem ; 54(4): 1698-704, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25651414

ABSTRACT

The crystal structure of the wurtzite-derived ß-CuGaO2 was refined by Rietveld analysis of high-resolution powder diffraction data obtained from synchrotron X-ray radiation. Its structural characteristics are discussed in comparison with the other I-III-VI2 and II-VI oxide semiconductors. The cation and oxygen tetrahedral distortions of the ß-CuGaO2 from an ideal wurtzite structure are small. The direct band-gap nature of the ß-CuGaO2, unlike ß-Ag(Ga,Al)O2, was explained by small cation and oxygen tetrahedral distortions. In terms of the thermal stability, the ß-CuGaO2 irreversibly transforms into delafossite α-CuGaO2 at >460 °C in an Ar atmosphere. The transformation enthalpy was approximately -32 kJ mol(-1), from differential scanning calorimetry. This value is close to the transformation enthalpy of CoO from the metastable zincblende form to the stable rock-salt form. The monovalent copper in ß-CuGaO2 was oxidized to divalent copper in an oxygen atmosphere and transformed into a mixture of CuGa2O4 spinel and CuO at temperatures >350 °C. These thermal properties indicate that ß-CuGaO2 is stable at ≤300 °C in both reducing and oxidizing atmospheres while in its metastable form. Consequently, this material could be of use in optoelectronic devices that do not exceed 300 °C.

17.
Sci Technol Adv Mater ; 16(2): 024902, 2015 Apr.
Article in English | MEDLINE | ID: mdl-27877769

ABSTRACT

Ternary zincblende-derived I-III-VI2 chalcogenide and II-IV-V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I-III-O2 oxide semiconductors with a wurtzite-derived ß-NaFeO2 structure are limited. Wurtzite-derived ß-LiGaO2 and ß-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. ß-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I-III-O2 semiconductors is still limited. In this paper we review previous studies on ß-LiGaO2, ß-AgGaO2 and ß-CuGaO2 to determine guiding principles for the development of wurtzite-derived I-III-O2 semiconductors.

18.
J Am Chem Soc ; 136(9): 3378-81, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24555768

ABSTRACT

An oxide semiconductor ß-CuGaO2 with a wurtzite-derived ß-NaFeO2 structure has been synthesized. Structural characterization has been carried out by Rietveld analysis using XRD and SAED, and it was shown that the lattice size is very close to that of zinc oxide. The optical absorption spectrum indicated that the band gap is 1.47 eV, which matches the band gap required to achieve the theoretical maximum conversion efficiency for a single-junction solar cell. The thermoelectromotive force indicated p-type conduction in its intrinsic state. Density functional theory calculations were performed to understand the electronic structure and optical properties of the semiconductor. These calculations indicated that ß-CuGaO2 is a direct semiconductor and intense absorption of light occurs near the band edge. These properties render this new material promising as an absorber in solar cells.

19.
J Nanosci Nanotechnol ; 11(6): 4815-23, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21770109

ABSTRACT

We successfully fabricated core/shell-type composite QDs based on the ternary-CuInSe2. For the CuInSe2/ZnSe core/shell QDs, an enhanced photoluminescence (PL) emission intensity, such as 16% of the photoluminescence quantum yield (PLQY), and a blue-shift in the emission after the ZnSe coating, were observed. The increase in the PLQY was the result of an exchange of the surface capping ligand from the organic hexadecylamine to the inorganic ZnSe and the smoothing of the confining profile due to the alloying. The blue-shift was attributed to the shrinkage of the effective size of the core-CuInSe2 region due to the partial alloying of the core-CuInSe2 with the ZnSe-shell around their interfaces. For the inverted core/shell QDs, i.e., the nominally ZnSe/CuIn5Se8 core/shell QDs, they showed a red emission at 619 nm. The emission wavelength is the shortest among the previously reported QDs in Cu-In-Se system.

20.
J Colloid Interface Sci ; 355(2): 274-81, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21215412

ABSTRACT

A novel synthesis route to organic-capped and colloidal ZnO quantum dots (QDs) has been developed. Specifically, zinc-di-t-butoxide and zinc-di-n-butoxide are hydrolyzed by very dilute water (400-600 mass ppm) in hydrophilic benzylamine and polymerized to ZnO by dehydration and/or a butanol elimination reaction. Growth of the ZnO QDs and exchange of the surface capping ligand from the hydroxyl groups and/or benzylamine to the oleylamine occur by heating the colloidal solution after addition of the oleylamine at 100-180°C. The final ZnO QDs with diameters in the range of 3-7 nm are highly dispersible in various organic solvents. The ZnO QDs exhibit the quantum size effect upon UV emission; it was controlled between 3.39 and 3.54 eV in the present study. The defect-related Vis emission decreased and the UV emission becomes dominant when zinc-di-n-butoxide with a 99.99% zinc purity is used as the starting material. The intensity of the photoluminescence UV emission is 1.5 times higher than that of the Vis emission.


Subject(s)
Biotechnology/methods , Colloids/chemical synthesis , Molecular Probes/chemical synthesis , Quantum Dots , Desiccation , Hot Temperature , Hydrolysis , Luminescence , Particle Size , Polymerization , Ultraviolet Rays , Water/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...