Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275996

ABSTRACT

Disorders in the inflammatory process underlie the pathogenesis of numerous diseases. The utilization of natural products as anti-inflammatory agents is a well-established approach in both traditional medicine and scientific research, with studies consistently demonstrating their efficacy in managing inflammatory conditions. Pequi oil, derived from Caryocar brasiliense, is a rich source of bioactive compounds including fatty acids and carotenoids, which exhibit immunomodulatory potential. This systematic review aims to comprehensively summarize the scientific evidence regarding the anti-inflammatory activity of pequi oil. Extensive literature searches were conducted across prominent databases (Scopus, BVS, CINAHL, Cochrane, LILACS, Embase, MEDLINE, ProQuest, PubMed, FSTA, ScienceDirect, and Web of Science). Studies evaluating the immunomodulatory activity of crude pequi oil using in vitro, in vivo models, or clinical trials were included. Out of the 438 articles identified, 10 met the stringent inclusion criteria. These studies collectively elucidate the potential of pequi oil to modulate gene expression, regulate circulating levels of pro- and anti-inflammatory mediators, and mitigate oxidative stress, immune cell migration, and cardinal signs of inflammation. Moreover, negligible to no toxicity of pequi oil was observed across the diverse evaluated models. Notably, variations in the chemical profile of the oil were noted, depending on the extraction methodology and geographical origin. This systematic review strongly supports the utility of pequi oil in controlling the inflammatory process. However, further comparative studies involving oils obtained via different methods and sourced from various regions are warranted to reinforce our understanding of its effectiveness and safety.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500883

ABSTRACT

Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages­J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.

3.
Biomed Pharmacother ; 153: 113348, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35820315

ABSTRACT

Pequi oil is extracted from the fruit of a Brazilian native plant (Caryocar brasiliense Camb) that contains some molecules with anticancer potential. Due to its hydrophobic property, the administration of pequi oil associated with nanoemulsion systems represents a successful strategy to improve oil bioavailability. Breast cancer is the most frequent type of cancer among women and conventional therapies used are frequently associated with several side effects. Thus, the aim of this study was to investigate the effects of pequi oil-based nanoemulsion (PeNE) on triple-negative breast cancer cells (4T1), in vitro. PeNE presented a dose- and time-dependent cytotoxic effect with lower IC50 than free pequi oil after 48 h of exposure (p < 0.001). At 180 µg/mL, PeNE demonstrated numerous cell alterations, when compared to free pequi oil, such as morphological alterations, reduction in cell proliferation and total cell number, damage to plasmatic membrane, induction of lysosomal membrane permeability and depolarization of mitochondrial membrane, alteration of intracellular ROS production and calcium level, and increase in phosphatidylserine exposure. Taken together, the results suggest an interesting induction of cell death mechanisms involving a combined action of factors that impair nucleus, mitochondria, lysosome, and ER function. In addition, more pronounced effects were observed in cells treated by PeNE at 180 µg/mL when compared to free pequi oil, thereby reinforcing the advantages of using nanometric platforms. These promising results highlight the use of PeNE as a potential complementary therapeutic approach to be employed along with conventional treatments against breast cancer in the future.


Subject(s)
Ericales , Malpighiales , Triple Negative Breast Neoplasms , Cell Proliferation , Ericales/chemistry , Female , Humans , Organelles , Plant Oils/chemistry , Plant Oils/pharmacology , Triple Negative Breast Neoplasms/drug therapy
4.
Front Oncol ; 11: 612903, 2021.
Article in English | MEDLINE | ID: mdl-33767985

ABSTRACT

Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments.

5.
Exp Dermatol ; 30(5): 710-716, 2021 05.
Article in English | MEDLINE | ID: mdl-33523510

ABSTRACT

Combined 5-fluorouracil (5-FU) and melittin (MEL) is believed to enhance cytotoxic effects on skin squamous cell carcinoma (SCC). However, the rationale underlying cytotoxicity is fundamentally important for a proper design of combination chemotherapy, and to provide translational insights for future therapeutics in the dermatology field. The aim was to elucidate the effects of 5-FU/MEL combination on the viability, proliferation and key structures of human squamous cell carcinoma (A431). Morphology, plasma membrane, DNA, mitochondria, oxidative stress, cell viability, proliferation and cell death pathways were targeted for investigation by microscopy, MTT, trypan blue assay, flow cytometry and real-time cell analysis. 5-FU/MEL (0.25 µM/0.52 µM) enhanced the cytotoxic effect in A431 cells (74.46%, p < .001) after 72 h exposure, showing greater cytotoxic effect when compared to each isolated compound (45.55% 5-FU and 61.78% MEL). The results suggest that MEL induces plasma membrane alterations that culminate in a loss of integrity at subsequent times, sensitizing the cell to 5-FU action. DNA fragmentation, S and G2/M arrest, disruption of mitochondrial metabolism, and alterations in cell morphology culminated in proliferation blockage and apoptosis. 5-FU/MEL combination design optimizes the cytotoxic effects of each drug at lower concentrations, which may represent an innovative strategy for SCC therapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Squamous Cell/drug therapy , Fluorouracil/pharmacology , Melitten/pharmacology , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Apoptosis/drug effects , Carcinoma, Squamous Cell/pathology , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Treatment Outcome , Up-Regulation
6.
Food Res Int ; 105: 184-196, 2018 03.
Article in English | MEDLINE | ID: mdl-29433206

ABSTRACT

This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M]+• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25µg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC50]=29.85 and 5.964µg/mL, respectively) but not NIH-3T3 cells (IC50=1579 and 911.5µg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25µg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC50≥800µg/mL) and no hemolytic activity. LEG (400 and 800µg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway.


Subject(s)
Apoptosis/drug effects , Lycopene/analysis , Lycopene/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Psidium/chemistry , Animals , Cell Cycle/drug effects , Cell Membrane , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Fragmentation/drug effects , Female , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
7.
Free Radic Biol Med ; 115: 68-79, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29162516

ABSTRACT

The amphibian skin plays an important role protecting the organism from external harmful factors such as microorganisms or UV radiation. Based on biorational strategies, many studies have investigated the cutaneous secretion of anurans as a source of bioactive molecules. By a peptidomic approach, a novel antioxidant peptide (AOP) with in vitro free radical scavenging ability was isolated from Physalaemus nattereri. The AOP, named antioxidin-I, has a molecular weight [M+H]+ = 1543.69Da and a TWYFITPYIPDK primary amino acid sequence. The gene encoding the antioxidin-I precursor was expressed in the skin tissue of three other Tropical frog species: Phyllomedusa tarsius, P. distincta and Pithecopus rohdei. cDNA sequencing revealed highly homologous regions (signal peptide and acidic region). Mature antioxidin-I has a novel primary sequence with low similarity compared with previously described amphibian's AOPs. Antioxidin-I adopts a random structure even at high concentrations of hydrophobic solvent, it has poor antimicrobial activity and poor performance in free radical scavenging assays in vitro, with the exception of the ORAC assay. However, antioxidin-I presented a low cytotoxicity and suppressed menadione-induced redox imbalance when tested with fibroblast in culture. In addition, it had the capacity to substantially attenuate the hypoxia-induced production of reactive oxygen species when tested in hypoxia exposed living microglial cells, suggesting a potential neuroprotective role for this peptide.


Subject(s)
Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Anura/physiology , Bacterial Infections/immunology , Fibroblasts/physiology , Microglia/metabolism , Skin/metabolism , Amphibian Proteins/immunology , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Antioxidants/metabolism , Cloning, Molecular , Free Radical Scavengers/metabolism , Mice , Molecular Structure , NIH 3T3 Cells , Neuroprotection , Oxidation-Reduction , Protein Conformation , Reactive Oxygen Species/metabolism
8.
Carbohydr Polym ; 157: 567-575, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987963

ABSTRACT

Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by introduction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were analyzed by: FTIR, elemental analysis, degree of substitution, Zeta potential, 1H NMR and 1H-13C correlation (HSQC). QCG were evaluated for their anti-staphylococcal activity by determining minimum inhibitory and bactericidal concentrations against pathogenic Staphylococcus spp. and by imaging using atomic force microscopy. Moreover, the mammalian cell biocompatibility were also assessed through hemolytic and cell toxicity assays. QCG presented promising antimicrobial activity against methicillin-resistant S. aureus and biocompatibility on tested cells. These results show that QCG could be a promising tool in the development of biomaterials with an anti-septic action.


Subject(s)
Anacardium/chemistry , Anti-Bacterial Agents/chemistry , Plant Gums/chemistry , Animals , Biocompatible Materials/chemistry , Cell Line , Erythrocytes/drug effects , Hemolysis , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Polymers , Staphylococcus/drug effects
9.
Int J Nanomedicine ; 9: 5055-69, 2014.
Article in English | MEDLINE | ID: mdl-25382976

ABSTRACT

Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT(®) L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antimicrobial Cationic Peptides/administration & dosage , Bacteremia/drug therapy , Blood Proteins/administration & dosage , Methacrylates/administration & dosage , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Bacteria/drug effects , Blood Proteins/chemistry , Cell Line, Tumor , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Methacrylates/chemistry , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Nanotechnology , Urochordata/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...